员工结构性办公推荐的经典假设检验与多元线性回归系数检验分析

Debby Alita, Ade Dwi Putra, D. Darwis
{"title":"员工结构性办公推荐的经典假设检验与多元线性回归系数检验分析","authors":"Debby Alita, Ade Dwi Putra, D. Darwis","doi":"10.22146/IJCCS.65586","DOIUrl":null,"url":null,"abstract":"The performance appraisal process in Religious High Court Bandar Lampung has not been carried out objectively, but rather a subjectivity element (relationship closeness). Some employees occupy structural positions but do not fulfil competence and promotion principles, so that it has an impact on providing promotion to a position in the judiciary. Multiple Linear Regression method can provide a predictive model for employee recommendations entitled to occupy positions in the agency. The method implementation using SPSS produces an equation Y = 74.177 + 0.035X1 + 0.020X2 - 0.026X3 + 0.045X4 + 0.001X5. This equation is applied to the employee performance values, and it is obtained from 40 employees 26 employees deserve to be given recommendations promotion. Regression performance testing results using 10-cross validation get the correlation coefficient value is 80.66% with MAE value of 2.24% and RMSE 3.88%, which mean has good performance.","PeriodicalId":31625,"journal":{"name":"IJCCS Indonesian Journal of Computing and Cybernetics Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Analysis of classic assumption test and multiple linear regression coefficient test for employee structural office recommendation\",\"authors\":\"Debby Alita, Ade Dwi Putra, D. Darwis\",\"doi\":\"10.22146/IJCCS.65586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance appraisal process in Religious High Court Bandar Lampung has not been carried out objectively, but rather a subjectivity element (relationship closeness). Some employees occupy structural positions but do not fulfil competence and promotion principles, so that it has an impact on providing promotion to a position in the judiciary. Multiple Linear Regression method can provide a predictive model for employee recommendations entitled to occupy positions in the agency. The method implementation using SPSS produces an equation Y = 74.177 + 0.035X1 + 0.020X2 - 0.026X3 + 0.045X4 + 0.001X5. This equation is applied to the employee performance values, and it is obtained from 40 employees 26 employees deserve to be given recommendations promotion. Regression performance testing results using 10-cross validation get the correlation coefficient value is 80.66% with MAE value of 2.24% and RMSE 3.88%, which mean has good performance.\",\"PeriodicalId\":31625,\"journal\":{\"name\":\"IJCCS Indonesian Journal of Computing and Cybernetics Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCCS Indonesian Journal of Computing and Cybernetics Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22146/IJCCS.65586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCCS Indonesian Journal of Computing and Cybernetics Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/IJCCS.65586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

班达尔·楠榜宗教高等法院的绩效评估过程并不是客观地进行的,而是一个主观因素(关系亲密度)。一些雇员担任结构性职位,但不符合能力和晋升原则,因此对司法部门职位的晋升产生了影响。多元线性回归方法可以为有权在机构中任职的员工推荐提供预测模型。利用SPSS软件实现方法,得到方程Y=74.177+0.035X1+0.020X2-0.026X3+0.045X4+0.001X5。该方程应用于员工绩效值,从40名员工中得出26名员工值得推荐晋升。使用10交叉验证的回归性能测试结果得到的相关系数为80.66%,MAE值为2.24%,RMSE值为3.88%,平均值具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of classic assumption test and multiple linear regression coefficient test for employee structural office recommendation
The performance appraisal process in Religious High Court Bandar Lampung has not been carried out objectively, but rather a subjectivity element (relationship closeness). Some employees occupy structural positions but do not fulfil competence and promotion principles, so that it has an impact on providing promotion to a position in the judiciary. Multiple Linear Regression method can provide a predictive model for employee recommendations entitled to occupy positions in the agency. The method implementation using SPSS produces an equation Y = 74.177 + 0.035X1 + 0.020X2 - 0.026X3 + 0.045X4 + 0.001X5. This equation is applied to the employee performance values, and it is obtained from 40 employees 26 employees deserve to be given recommendations promotion. Regression performance testing results using 10-cross validation get the correlation coefficient value is 80.66% with MAE value of 2.24% and RMSE 3.88%, which mean has good performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
20
审稿时长
12 weeks
期刊最新文献
Identify Reviews of Pedulilindungi Applications using Topic Modeling with Latent Dirichlet Allocation Method Convolutional Long Short-Term Memory (C-LSTM) For Multi Product Prediction Optimizing ODP Device Placement on FTTH Network Using Genetic Algorithms Backward Elimination for Feature Selection on Breast Cancer Classification Using Logistic Regression and Support Vector Machine Algorithms ESSAY ANSWER CLASSIFICATION WITH SMOTE RANDOM FOREST AND ADABOOST IN AUTOMATED ESSAY SCORING
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1