南极和永久冻土的面积和边界——综述

IF 3 3区 地球科学 Q2 GEOGRAPHY, PHYSICAL Permafrost and Periglacial Processes Pub Date : 2022-10-04 DOI:10.1002/ppp.2170
W. Dobiński, J. E. Szafraniec, Bartłomiej Szypuła
{"title":"南极和永久冻土的面积和边界——综述","authors":"W. Dobiński, J. E. Szafraniec, Bartłomiej Szypuła","doi":"10.1002/ppp.2170","DOIUrl":null,"url":null,"abstract":"The Antarctic continent is a crucial area for ultimate determination of permafrost extent on Earth, and its solution depends on the theoretical assumptions adopted. In fact, it ranges from 0.022 × 106 to 14 × 106 km2. This level of inaccuracy is unprecedented in the Earth sciences. The novelty of the present study consists in determining the extent of Antarctic permafrost not based exclusively on empirical studies but on universal criteria resulting from the definition of permafrost as the thermal state of the lithosphere, which was applied for the first time to this continent. The area covered by permafrost in Antarctica is ca. 13.9 million km2, that is its entire surface. This result was also made possible due to the first clear determination of the boundaries and area of the continent. The Antarctic area includes (a) rocky subsurface with (b) continental ice‐sheets and (c) shelf glaciers, which, due to their terrigenous origin and belonging to the lithosphere, belongs to the continent in the same way. Antarctica is covered by continuous permafrost, either in a frozen or in a cryotic state. This also significantly influences delimitation of the global extent of permafrost, which can therefore be defined much more accurately. The proposed ice reclassification and its transfer from the hydrosphere to the lithosphere will allow the uniform treatment of ice in the Earth sciences, both on Earth and on other celestial bodies.","PeriodicalId":54629,"journal":{"name":"Permafrost and Periglacial Processes","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2022-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Area and borders of Antarctic and permafrost—A review and synthesis\",\"authors\":\"W. Dobiński, J. E. Szafraniec, Bartłomiej Szypuła\",\"doi\":\"10.1002/ppp.2170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Antarctic continent is a crucial area for ultimate determination of permafrost extent on Earth, and its solution depends on the theoretical assumptions adopted. In fact, it ranges from 0.022 × 106 to 14 × 106 km2. This level of inaccuracy is unprecedented in the Earth sciences. The novelty of the present study consists in determining the extent of Antarctic permafrost not based exclusively on empirical studies but on universal criteria resulting from the definition of permafrost as the thermal state of the lithosphere, which was applied for the first time to this continent. The area covered by permafrost in Antarctica is ca. 13.9 million km2, that is its entire surface. This result was also made possible due to the first clear determination of the boundaries and area of the continent. The Antarctic area includes (a) rocky subsurface with (b) continental ice‐sheets and (c) shelf glaciers, which, due to their terrigenous origin and belonging to the lithosphere, belongs to the continent in the same way. Antarctica is covered by continuous permafrost, either in a frozen or in a cryotic state. This also significantly influences delimitation of the global extent of permafrost, which can therefore be defined much more accurately. The proposed ice reclassification and its transfer from the hydrosphere to the lithosphere will allow the uniform treatment of ice in the Earth sciences, both on Earth and on other celestial bodies.\",\"PeriodicalId\":54629,\"journal\":{\"name\":\"Permafrost and Periglacial Processes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Permafrost and Periglacial Processes\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/ppp.2170\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Permafrost and Periglacial Processes","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/ppp.2170","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

南极大陆是最终确定地球永久冻土范围的关键区域,其解决方案取决于所采用的理论假设。事实上,它的范围从0.022 × 106至14 × 106 平方公里。这种不准确程度在地球科学中是前所未有的。本研究的新颖之处在于,确定南极永久冻土的范围不仅基于经验研究,而且基于将永久冻土定义为岩石圈的热状态所产生的普遍标准,这是首次应用于该大陆。南极洲永久冻土覆盖的面积约为1390万平方公里,即其整个表面。由于第一次明确确定了非洲大陆的边界和面积,这一结果也成为可能。南极地区包括(a)带(b)大陆冰盖的岩石地下和(c)陆架冰川,由于其陆源起源和属于岩石圈,它们以同样的方式属于大陆。南极洲被连续的永久冻土覆盖,要么处于冰冻状态,要么处于低温状态。这也极大地影响了全球永久冻土范围的划界,因此可以更准确地对其进行定义。拟议的冰重新分类及其从水圈到岩石圈的转移将使地球科学和其他天体上的冰得到统一处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Area and borders of Antarctic and permafrost—A review and synthesis
The Antarctic continent is a crucial area for ultimate determination of permafrost extent on Earth, and its solution depends on the theoretical assumptions adopted. In fact, it ranges from 0.022 × 106 to 14 × 106 km2. This level of inaccuracy is unprecedented in the Earth sciences. The novelty of the present study consists in determining the extent of Antarctic permafrost not based exclusively on empirical studies but on universal criteria resulting from the definition of permafrost as the thermal state of the lithosphere, which was applied for the first time to this continent. The area covered by permafrost in Antarctica is ca. 13.9 million km2, that is its entire surface. This result was also made possible due to the first clear determination of the boundaries and area of the continent. The Antarctic area includes (a) rocky subsurface with (b) continental ice‐sheets and (c) shelf glaciers, which, due to their terrigenous origin and belonging to the lithosphere, belongs to the continent in the same way. Antarctica is covered by continuous permafrost, either in a frozen or in a cryotic state. This also significantly influences delimitation of the global extent of permafrost, which can therefore be defined much more accurately. The proposed ice reclassification and its transfer from the hydrosphere to the lithosphere will allow the uniform treatment of ice in the Earth sciences, both on Earth and on other celestial bodies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.70
自引率
8.00%
发文量
43
审稿时长
>12 weeks
期刊介绍: Permafrost and Periglacial Processes is an international journal dedicated to the rapid publication of scientific and technical papers concerned with earth surface cryogenic processes, landforms and sediments present in a variety of (Sub) Arctic, Antarctic and High Mountain environments. It provides an efficient vehicle of communication amongst those with an interest in the cold, non-glacial geosciences. The focus is on (1) original research based on geomorphological, hydrological, sedimentological, geotechnical and engineering aspects of these areas and (2) original research carried out upon relict features where the objective has been to reconstruct the nature of the processes and/or palaeoenvironments which gave rise to these features, as opposed to purely stratigraphical considerations. The journal also publishes short communications, reviews, discussions and book reviews. The high scientific standard, interdisciplinary character and worldwide representation of PPP are maintained by regional editorial support and a rigorous refereeing system.
期刊最新文献
Effects of Wildfires on Soil Organic Carbon in Boreal Permafrost Regions: A Review Synchronous Isotopic Curves in Ice Wedges of the Batagay Yedoma: Precision Matching and Similarity Scoring Sensitivity of Permafrost Degradation to Geological and Climatic Conditions A Biogeochemical Study of Greenhouse Gas Formation From Two Ice Complexes of Batagay Megaslump, East Siberia Optically‐Stimulated‐Luminescence Ages and Paleo‐Environmental Implications of Relict Frost Wedges in North–Central Bohemia, Czech Republic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1