{"title":"Pt(η - a4l)中的四齿有机膦(A = P4, P3Si, P2X2 (X2 = N2, S2, C2), PX3 (X3 = N3, N2O)):结构方面","authors":"M. Melnik, P. Mikuš","doi":"10.1515/mgmc-2021-0031","DOIUrl":null,"url":null,"abstract":"Abstract We report herein structural characterization of monomeric platinum complexes of the composition: Pt(η4–P4L), Pt(η4–P3SiL), Pt(η4–P2N2L), Pt(η4–P2S2L), Pt(η4–P2C2L), Pt(η4–PN3L), and Pt(η4–PN2OL). The tetradentate ligands with 10-, 11-, 12-, 14-, and 16-membered macrocycles create a variety of chelate bond angles. A distorted square-planar geometry about Pt(II) atoms with cis–configuration by far prevail. There is an example Pt(η4–P3SiL) in which the respective donor atoms build up a trigonal-pyramidal geometry about Pt(II) atom.","PeriodicalId":48891,"journal":{"name":"Main Group Metal Chemistry","volume":"44 1","pages":"270 - 280"},"PeriodicalIF":1.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tetradentate organophosphines in Pt(η4–A4L) (A = P4, P3Si, P2X2 (X2 = N2, S2, C2), PX3 (X3 = N3, N2O)): Structural aspects\",\"authors\":\"M. Melnik, P. Mikuš\",\"doi\":\"10.1515/mgmc-2021-0031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We report herein structural characterization of monomeric platinum complexes of the composition: Pt(η4–P4L), Pt(η4–P3SiL), Pt(η4–P2N2L), Pt(η4–P2S2L), Pt(η4–P2C2L), Pt(η4–PN3L), and Pt(η4–PN2OL). The tetradentate ligands with 10-, 11-, 12-, 14-, and 16-membered macrocycles create a variety of chelate bond angles. A distorted square-planar geometry about Pt(II) atoms with cis–configuration by far prevail. There is an example Pt(η4–P3SiL) in which the respective donor atoms build up a trigonal-pyramidal geometry about Pt(II) atom.\",\"PeriodicalId\":48891,\"journal\":{\"name\":\"Main Group Metal Chemistry\",\"volume\":\"44 1\",\"pages\":\"270 - 280\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Main Group Metal Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1515/mgmc-2021-0031\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Main Group Metal Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/mgmc-2021-0031","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Abstract We report herein structural characterization of monomeric platinum complexes of the composition: Pt(η4–P4L), Pt(η4–P3SiL), Pt(η4–P2N2L), Pt(η4–P2S2L), Pt(η4–P2C2L), Pt(η4–PN3L), and Pt(η4–PN2OL). The tetradentate ligands with 10-, 11-, 12-, 14-, and 16-membered macrocycles create a variety of chelate bond angles. A distorted square-planar geometry about Pt(II) atoms with cis–configuration by far prevail. There is an example Pt(η4–P3SiL) in which the respective donor atoms build up a trigonal-pyramidal geometry about Pt(II) atom.
期刊介绍:
This journal is committed to the publication of short communications, original research, and review articles within the field of main group metal and semi-metal chemistry, Main Group Metal Chemistry is an open-access, peer-reviewed journal that publishes in ongoing way. Papers addressing the theoretical, spectroscopic, mechanistic and synthetic aspects of inorganic, coordination and organometallic main group metal and semi-metal compounds, including zinc, cadmium and mercury are welcome. The journal also publishes studies relating to environmental aspects of these metals, their toxicology, release pathways and fate. Articles on the applications of main group metal chemistry, including in the fields of polymer chemistry, agriculture, electronics and catalysis, are also accepted.