用于太阳图像过曝光区域恢复的Mask-Pix2Pix网络

IF 1.6 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Advances in Astronomy Pub Date : 2019-09-05 DOI:10.1155/2019/5343254
Dong Zhao, Long Xu, Linjie Chen, Yihua Yan, Ling-yu Duan
{"title":"用于太阳图像过曝光区域恢复的Mask-Pix2Pix网络","authors":"Dong Zhao, Long Xu, Linjie Chen, Yihua Yan, Ling-yu Duan","doi":"10.1155/2019/5343254","DOIUrl":null,"url":null,"abstract":"Overexposure may happen for imaging of solar observation as extremely violet solar bursts occur, which means that signal intensity goes beyond the dynamic range of imaging system of a telescope, resulting in loss of signal. For example, during solar flare, Atmospheric Imaging Assembly (AIA) of Solar Dynamics Observatory (SDO) often records overexposed images/videos, resulting loss of fine structures of solar flare. This paper makes effort to retrieve/recover missing information of overexposure by exploiting deep learning for its powerful nonlinear representation which makes it widely used in image reconstruction/restoration. First, a new model, namely, mask-Pix2Pix network, is proposed for overexposure recovery. It is built on a well-known Pix2Pix network of conditional generative adversarial network (cGAN). In addition, a hybrid loss function, including an adversarial loss, a masked L1 loss and a edge mass loss/smoothness, are integrated together for addressing challenges of overexposure relative to conventional image restoration. Moreover, a new database of overexposure is established for training the proposed model. Extensive experimental results demonstrate that the proposed mask-Pix2Pix network can well recover missing information of overexposure and outperforms the state of the arts originally designed for image reconstruction tasks.","PeriodicalId":48962,"journal":{"name":"Advances in Astronomy","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2019-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/5343254","citationCount":"5","resultStr":"{\"title\":\"Mask-Pix2Pix Network for Overexposure Region Recovery of Solar Image\",\"authors\":\"Dong Zhao, Long Xu, Linjie Chen, Yihua Yan, Ling-yu Duan\",\"doi\":\"10.1155/2019/5343254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Overexposure may happen for imaging of solar observation as extremely violet solar bursts occur, which means that signal intensity goes beyond the dynamic range of imaging system of a telescope, resulting in loss of signal. For example, during solar flare, Atmospheric Imaging Assembly (AIA) of Solar Dynamics Observatory (SDO) often records overexposed images/videos, resulting loss of fine structures of solar flare. This paper makes effort to retrieve/recover missing information of overexposure by exploiting deep learning for its powerful nonlinear representation which makes it widely used in image reconstruction/restoration. First, a new model, namely, mask-Pix2Pix network, is proposed for overexposure recovery. It is built on a well-known Pix2Pix network of conditional generative adversarial network (cGAN). In addition, a hybrid loss function, including an adversarial loss, a masked L1 loss and a edge mass loss/smoothness, are integrated together for addressing challenges of overexposure relative to conventional image restoration. Moreover, a new database of overexposure is established for training the proposed model. Extensive experimental results demonstrate that the proposed mask-Pix2Pix network can well recover missing information of overexposure and outperforms the state of the arts originally designed for image reconstruction tasks.\",\"PeriodicalId\":48962,\"journal\":{\"name\":\"Advances in Astronomy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2019-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2019/5343254\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2019/5343254\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2019/5343254","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 5

摘要

太阳观测成像在发生极紫光爆发时可能出现过曝光现象,即信号强度超出望远镜成像系统的动态范围,导致信号丢失。例如,在太阳耀斑期间,太阳动力学观测台(SDO)的大气成像组件(AIA)经常记录过度曝光的图像/视频,导致太阳耀斑的精细结构丢失。本文试图利用深度学习强大的非线性表征来检索/恢复过度曝光的缺失信息,使其在图像重建/恢复中得到广泛的应用。首先,提出了一种新的过度曝光恢复模型,即掩模- pix2pix网络。它建立在著名的条件生成对抗网络(cGAN)的Pix2Pix网络上。此外,混合损失函数,包括对抗损失,掩蔽L1损失和边缘质量损失/平滑,被集成在一起,以解决相对于传统图像恢复的过度曝光挑战。此外,还建立了一个新的过度曝光数据库来训练所提出的模型。大量的实验结果表明,所提出的mask-Pix2Pix网络可以很好地恢复过度曝光的缺失信息,并且优于最初为图像重建任务设计的技术水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mask-Pix2Pix Network for Overexposure Region Recovery of Solar Image
Overexposure may happen for imaging of solar observation as extremely violet solar bursts occur, which means that signal intensity goes beyond the dynamic range of imaging system of a telescope, resulting in loss of signal. For example, during solar flare, Atmospheric Imaging Assembly (AIA) of Solar Dynamics Observatory (SDO) often records overexposed images/videos, resulting loss of fine structures of solar flare. This paper makes effort to retrieve/recover missing information of overexposure by exploiting deep learning for its powerful nonlinear representation which makes it widely used in image reconstruction/restoration. First, a new model, namely, mask-Pix2Pix network, is proposed for overexposure recovery. It is built on a well-known Pix2Pix network of conditional generative adversarial network (cGAN). In addition, a hybrid loss function, including an adversarial loss, a masked L1 loss and a edge mass loss/smoothness, are integrated together for addressing challenges of overexposure relative to conventional image restoration. Moreover, a new database of overexposure is established for training the proposed model. Extensive experimental results demonstrate that the proposed mask-Pix2Pix network can well recover missing information of overexposure and outperforms the state of the arts originally designed for image reconstruction tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Astronomy
Advances in Astronomy ASTRONOMY & ASTROPHYSICS-
CiteScore
2.70
自引率
7.10%
发文量
10
审稿时长
22 weeks
期刊介绍: Advances in Astronomy publishes articles in all areas of astronomy, astrophysics, and cosmology. The journal accepts both observational and theoretical investigations into celestial objects and the wider universe, as well as the reports of new methods and instrumentation for their study.
期刊最新文献
A Study of the Early Cosmic Dynamics in a Multifield Model of Inflation and Curvature Perturbations Forecasting Ionospheric TEC Changes Associated with the December 2019 and June 2020 Solar Eclipses: A Comparative Analysis of OKSM, FFNN, and DeepAR Models Measuring Track-Related Pointing Errors on the Nanshan Radio Telescope with an Optical Pointing Telescope Tracking and Disturbance Suppression of the Radio Telescope Servo System Based on the Equivalent-Input-Disturbance Approach Dark Energy from Cosmological Energy Conservation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1