变化负荷需求下配电系统优化光伏发电的影响与评价

IF 0.6 Q3 ENGINEERING, MULTIDISCIPLINARY Jurnal Teknologi-Sciences & Engineering Pub Date : 2023-04-19 DOI:10.11113/jurnalteknologi.v85.18684
Hanis Farhah Jamahori, M. Abdullah, Abid Ali
{"title":"变化负荷需求下配电系统优化光伏发电的影响与评价","authors":"Hanis Farhah Jamahori, M. Abdullah, Abid Ali","doi":"10.11113/jurnalteknologi.v85.18684","DOIUrl":null,"url":null,"abstract":"Most distributed renewable energy generation (DREG) planning studies are performed using a constant load model and a dispatchable generation unit. However, the renewable generation unit and load demand vary in real life, and the generation size at the peak demand varies accordingly with loading levels. Such considerations may lead to the erroneous conclusion: the power loss reduction and bus voltage improvement may not be optimal. Consequently, the generation unit must be adequately integrated to offer optimal capacity in the distribution system while considering non-constant load demand as a part of DREG planning. Therefore, the impact of integrating photovoltaic (PV) considering historical solar weather data and varying load demand for five different voltage-dependent load models is proposed in this study. Particle swarm optimization (PSO) is employed to find the optimal location and size of PV with the objective to minimize power losses in the distribution system using IEEE 33-bus and IEEE 69-bus test systems. The findings are evaluated based on the comparative analysis of power losses reduction, PV penetration level, power loss index, and voltage deviation index. Findings revealed that the proposed model is effective in determining the optimal location and size of PV with a significant reduction of power losses that varies between 13.84% to 32.71% in 33-bus, and between 18.56% to 43.80% in 69-bus. In addition, the improvement in minimum bus voltage and other performance indices are also significant.","PeriodicalId":47541,"journal":{"name":"Jurnal Teknologi-Sciences & Engineering","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IMPACT AND EVALUATION OF OPTIMIZED PV GENERATION IN THE DISTRIBUTION SYSTEM WITH VARYING LOAD DEMANDS\",\"authors\":\"Hanis Farhah Jamahori, M. Abdullah, Abid Ali\",\"doi\":\"10.11113/jurnalteknologi.v85.18684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most distributed renewable energy generation (DREG) planning studies are performed using a constant load model and a dispatchable generation unit. However, the renewable generation unit and load demand vary in real life, and the generation size at the peak demand varies accordingly with loading levels. Such considerations may lead to the erroneous conclusion: the power loss reduction and bus voltage improvement may not be optimal. Consequently, the generation unit must be adequately integrated to offer optimal capacity in the distribution system while considering non-constant load demand as a part of DREG planning. Therefore, the impact of integrating photovoltaic (PV) considering historical solar weather data and varying load demand for five different voltage-dependent load models is proposed in this study. Particle swarm optimization (PSO) is employed to find the optimal location and size of PV with the objective to minimize power losses in the distribution system using IEEE 33-bus and IEEE 69-bus test systems. The findings are evaluated based on the comparative analysis of power losses reduction, PV penetration level, power loss index, and voltage deviation index. Findings revealed that the proposed model is effective in determining the optimal location and size of PV with a significant reduction of power losses that varies between 13.84% to 32.71% in 33-bus, and between 18.56% to 43.80% in 69-bus. In addition, the improvement in minimum bus voltage and other performance indices are also significant.\",\"PeriodicalId\":47541,\"journal\":{\"name\":\"Jurnal Teknologi-Sciences & Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Teknologi-Sciences & Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11113/jurnalteknologi.v85.18684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi-Sciences & Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/jurnalteknologi.v85.18684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

大多数分布式可再生能源发电(DREG)规划研究都是使用恒定负荷模型和可调度发电单元进行的。然而,在现实生活中,可再生能源发电机组和负荷需求是不同的,峰值需求时的发电规模随负荷水平而变化。这样的考虑可能会导致错误的结论:减少功率损耗和母线电压的改善可能不是最佳的。因此,发电机组必须充分集成,以在配电系统中提供最佳容量,同时将非恒定负荷需求作为DREG规划的一部分。因此,本研究提出了考虑历史太阳天气数据和变化负荷需求的五种不同电压相关负荷模型的光伏(PV)集成的影响。采用ieee33总线和ieee69总线测试系统,采用粒子群算法(PSO)寻找光伏电站的最优位置和尺寸,以使配电系统的功率损耗最小。研究结果是基于功率损耗减少、光伏渗透水平、功率损耗指数和电压偏差指数的对比分析来评估的。结果表明,该模型可以有效地确定光伏的最佳位置和尺寸,并显著降低33-母线的功率损耗,降幅在13.84%至32.71%之间,在69-母线的功率损耗在18.56%至43.80%之间。此外,在最小母线电压和其他性能指标上也有显著的改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IMPACT AND EVALUATION OF OPTIMIZED PV GENERATION IN THE DISTRIBUTION SYSTEM WITH VARYING LOAD DEMANDS
Most distributed renewable energy generation (DREG) planning studies are performed using a constant load model and a dispatchable generation unit. However, the renewable generation unit and load demand vary in real life, and the generation size at the peak demand varies accordingly with loading levels. Such considerations may lead to the erroneous conclusion: the power loss reduction and bus voltage improvement may not be optimal. Consequently, the generation unit must be adequately integrated to offer optimal capacity in the distribution system while considering non-constant load demand as a part of DREG planning. Therefore, the impact of integrating photovoltaic (PV) considering historical solar weather data and varying load demand for five different voltage-dependent load models is proposed in this study. Particle swarm optimization (PSO) is employed to find the optimal location and size of PV with the objective to minimize power losses in the distribution system using IEEE 33-bus and IEEE 69-bus test systems. The findings are evaluated based on the comparative analysis of power losses reduction, PV penetration level, power loss index, and voltage deviation index. Findings revealed that the proposed model is effective in determining the optimal location and size of PV with a significant reduction of power losses that varies between 13.84% to 32.71% in 33-bus, and between 18.56% to 43.80% in 69-bus. In addition, the improvement in minimum bus voltage and other performance indices are also significant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Jurnal Teknologi-Sciences & Engineering
Jurnal Teknologi-Sciences & Engineering ENGINEERING, MULTIDISCIPLINARY-
CiteScore
1.30
自引率
0.00%
发文量
96
期刊最新文献
A RECENT REVIEW OF THE SANDWICH-STRUCTURED COMPOSITE METAMATERIALS: STATIC AND DYNAMIC ANALYSIS ANALYSIS OF ACTIVE SECONDARY SUSPENSION WITH MODIFIED SKYHOOK CONTROLLER TO IMPROVE RIDE PERFORMANCE OF RAILWAY VEHICLE DESIGNING THE TECHNOLOGY FOR TURBIDITY SENSOR-BASED AUTOMATIC RIVER SEDIMENTATION MEASUREMENT CFD SIMULATION AND VALIDATION FOR MIXING VENTILATION SCALED-DOWN EMPTY AIRCRAFT CABIN USING OPENFOAM COMPARATIVE STUDY OF CONFIGURATIONS FOR PHOTOVOLTAIC-THERMOELECTRIC GENERATOR COGENERATION SYSTEM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1