{"title":"利用机器学习和可穿戴设备的原始信号进行高精度的人类活动识别","authors":"Andonis Papaleonidas, A. Psathas, L. Iliadis","doi":"10.1080/24751839.2021.1987706","DOIUrl":null,"url":null,"abstract":"ABSTRACT Human activity recognition (HAR) is vital in a wide range of real-life applications such as health monitoring of olderly people, abnormal behaviour detection and smart home management. HAR systems can employ smart human-computer interfaces and be parts of active, intelligent surveillance systems. The increasing use of high-tech mobile and wearable devices, such as smart phones, smart watches and smart bands, can be the key elements in building high accuracy models, as they can provide a tremendous number of signals. This research aims to develop and test a machine learning (ML) model, which can successfully recognize a performed activity using raw signals obtained by wearable devices. Photoplethysmography – Daily Life Activities (PPG-DaLiA) dataset contains data related to 15 individuals wearing physiological and motion sensors. PPG-DaLiA was used as an input to a custom data segmentation model to obtain the respective training and testing dataset. Overall, 23 ML well-established models were employed. The weighted and the fine k-nearest neighbours, the fine Gaussian support vector machines and the bagged trees were the algorithms that achieved the best performance with a very high accuracy level.","PeriodicalId":32180,"journal":{"name":"Journal of Information and Telecommunication","volume":"6 1","pages":"237 - 253"},"PeriodicalIF":2.7000,"publicationDate":"2021-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"High accuracy human activity recognition using machine learning and wearable devices’ raw signals\",\"authors\":\"Andonis Papaleonidas, A. Psathas, L. Iliadis\",\"doi\":\"10.1080/24751839.2021.1987706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Human activity recognition (HAR) is vital in a wide range of real-life applications such as health monitoring of olderly people, abnormal behaviour detection and smart home management. HAR systems can employ smart human-computer interfaces and be parts of active, intelligent surveillance systems. The increasing use of high-tech mobile and wearable devices, such as smart phones, smart watches and smart bands, can be the key elements in building high accuracy models, as they can provide a tremendous number of signals. This research aims to develop and test a machine learning (ML) model, which can successfully recognize a performed activity using raw signals obtained by wearable devices. Photoplethysmography – Daily Life Activities (PPG-DaLiA) dataset contains data related to 15 individuals wearing physiological and motion sensors. PPG-DaLiA was used as an input to a custom data segmentation model to obtain the respective training and testing dataset. Overall, 23 ML well-established models were employed. The weighted and the fine k-nearest neighbours, the fine Gaussian support vector machines and the bagged trees were the algorithms that achieved the best performance with a very high accuracy level.\",\"PeriodicalId\":32180,\"journal\":{\"name\":\"Journal of Information and Telecommunication\",\"volume\":\"6 1\",\"pages\":\"237 - 253\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2021-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information and Telecommunication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/24751839.2021.1987706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information and Telecommunication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24751839.2021.1987706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
High accuracy human activity recognition using machine learning and wearable devices’ raw signals
ABSTRACT Human activity recognition (HAR) is vital in a wide range of real-life applications such as health monitoring of olderly people, abnormal behaviour detection and smart home management. HAR systems can employ smart human-computer interfaces and be parts of active, intelligent surveillance systems. The increasing use of high-tech mobile and wearable devices, such as smart phones, smart watches and smart bands, can be the key elements in building high accuracy models, as they can provide a tremendous number of signals. This research aims to develop and test a machine learning (ML) model, which can successfully recognize a performed activity using raw signals obtained by wearable devices. Photoplethysmography – Daily Life Activities (PPG-DaLiA) dataset contains data related to 15 individuals wearing physiological and motion sensors. PPG-DaLiA was used as an input to a custom data segmentation model to obtain the respective training and testing dataset. Overall, 23 ML well-established models were employed. The weighted and the fine k-nearest neighbours, the fine Gaussian support vector machines and the bagged trees were the algorithms that achieved the best performance with a very high accuracy level.