Manuel Feurhuber , Paul Burian , Marino Magno , Marco Miranda , Christoph Hochenauer
{"title":"建立了基于灭菌参数的蒸汽灭菌器空间实时解析CFD模型,以预测负载温度和细菌的理论灭活","authors":"Manuel Feurhuber , Paul Burian , Marino Magno , Marco Miranda , Christoph Hochenauer","doi":"10.1016/j.phmed.2019.100020","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a CFD model to predict the fluid flow, fluid temperature, load temperature and the theoretical inactivation of bacteria in a modern steam sterilizer, with three significant modifications compared to current state-of-the-art simulations of steam sterilizers. 1) The fluid and the load temperature was investigated for unwrapped load. Measurements of the fluid temperature and the load temperature were performed to validate the CFD model. The average error between the simulated and the measured temperatures was below 0.4 K. 2) The steam quality inside a steam sterilizer was investigated for unwrapped load. With the developed CFD model it is possible to predict the steam quality inside the steam sterilizer spatially and temporally resolved. 3) A first order reaction kinetic approach was added to the CFD model to predict the theoretical inactivation of two different types of bacteria in the steam sterilizer, as well as on the surface of the unwrapped load based on sterilization parameters. The results indicate that the CFD model is able to predict the theoretical inactivation of bacteria on the surface of the load, based on sterilization parameters.</p></div>","PeriodicalId":37787,"journal":{"name":"Physics in Medicine","volume":"8 ","pages":"Article 100020"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.phmed.2019.100020","citationCount":"10","resultStr":"{\"title\":\"Development of a spatially and timely resolved CFD model of a steam sterilizer to predict the load temperature and the theoretical inactivation of bacteria based on sterilization parameters\",\"authors\":\"Manuel Feurhuber , Paul Burian , Marino Magno , Marco Miranda , Christoph Hochenauer\",\"doi\":\"10.1016/j.phmed.2019.100020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a CFD model to predict the fluid flow, fluid temperature, load temperature and the theoretical inactivation of bacteria in a modern steam sterilizer, with three significant modifications compared to current state-of-the-art simulations of steam sterilizers. 1) The fluid and the load temperature was investigated for unwrapped load. Measurements of the fluid temperature and the load temperature were performed to validate the CFD model. The average error between the simulated and the measured temperatures was below 0.4 K. 2) The steam quality inside a steam sterilizer was investigated for unwrapped load. With the developed CFD model it is possible to predict the steam quality inside the steam sterilizer spatially and temporally resolved. 3) A first order reaction kinetic approach was added to the CFD model to predict the theoretical inactivation of two different types of bacteria in the steam sterilizer, as well as on the surface of the unwrapped load based on sterilization parameters. The results indicate that the CFD model is able to predict the theoretical inactivation of bacteria on the surface of the load, based on sterilization parameters.</p></div>\",\"PeriodicalId\":37787,\"journal\":{\"name\":\"Physics in Medicine\",\"volume\":\"8 \",\"pages\":\"Article 100020\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.phmed.2019.100020\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics in Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352451019300277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352451019300277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Development of a spatially and timely resolved CFD model of a steam sterilizer to predict the load temperature and the theoretical inactivation of bacteria based on sterilization parameters
This paper presents a CFD model to predict the fluid flow, fluid temperature, load temperature and the theoretical inactivation of bacteria in a modern steam sterilizer, with three significant modifications compared to current state-of-the-art simulations of steam sterilizers. 1) The fluid and the load temperature was investigated for unwrapped load. Measurements of the fluid temperature and the load temperature were performed to validate the CFD model. The average error between the simulated and the measured temperatures was below 0.4 K. 2) The steam quality inside a steam sterilizer was investigated for unwrapped load. With the developed CFD model it is possible to predict the steam quality inside the steam sterilizer spatially and temporally resolved. 3) A first order reaction kinetic approach was added to the CFD model to predict the theoretical inactivation of two different types of bacteria in the steam sterilizer, as well as on the surface of the unwrapped load based on sterilization parameters. The results indicate that the CFD model is able to predict the theoretical inactivation of bacteria on the surface of the load, based on sterilization parameters.
期刊介绍:
The scope of Physics in Medicine consists of the application of theoretical and practical physics to medicine, physiology and biology. Topics covered are: Physics of Imaging Ultrasonic imaging, Optical imaging, X-ray imaging, Fluorescence Physics of Electromagnetics Neural Engineering, Signal analysis in Medicine, Electromagnetics and the nerve system, Quantum Electronics Physics of Therapy Ultrasonic therapy, Vibrational medicine, Laser Physics Physics of Materials and Mechanics Physics of impact and injuries, Physics of proteins, Metamaterials, Nanoscience and Nanotechnology, Biomedical Materials, Physics of vascular and cerebrovascular diseases, Micromechanics and Micro engineering, Microfluidics in medicine, Mechanics of the human body, Rotary molecular motors, Biological physics, Physics of bio fabrication and regenerative medicine Physics of Instrumentation Engineering of instruments, Physical effects of the application of instruments, Measurement Science and Technology, Physics of micro-labs and bioanalytical sensor devices, Optical instrumentation, Ultrasound instruments Physics of Hearing and Seeing Acoustics and hearing, Physics of hearing aids, Optics and vision, Physics of vision aids Physics of Space Medicine Space physiology, Space medicine related Physics.