Qingxia Liu , Bang Wang , Jiming Qi , Xianjun Deng
{"title":"一种新的基于邻居环结构的网络拆解中心性测度","authors":"Qingxia Liu , Bang Wang , Jiming Qi , Xianjun Deng","doi":"10.1016/j.dcan.2022.09.016","DOIUrl":null,"url":null,"abstract":"<div><p>Nearly all real-world networks are complex networks and usually are in danger of collapse. Therefore, it is crucial to exploit and understand the mechanisms of network attacks and provide better protection for network functionalities. Network dismantling aims to find the smallest set of nodes such that after their removal the network is broken into connected components of sub-extensive size. To overcome the limitations and drawbacks of existing network dismantling methods, this paper focuses on network dismantling problem and proposes a neighbor-loop structure based centrality metric, NL, which achieves a balance between computational efficiency and evaluation accuracy. In addition, we design a novel method combining NL-based nodes-removing, greedy tree-breaking and reinsertion. Moreover, we compare five baseline methods with our algorithm on ten widely used real-world networks and three types of model networks including Erdös-Rényi random networks, Watts-Strogatz small-world networks and Barabási-Albert scale-free networks with different network generation parameters. Experimental results demonstrate that our proposed method outperforms most peer methods by obtaining a minimal set of targeted attack nodes. Furthermore, the insights gained from this study may be of assistance to future practical research into real-world networks.</p></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352864822001912/pdfft?md5=9b3045bde73e9d3f8278960f267b5e51&pid=1-s2.0-S2352864822001912-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A new centrality measure based on neighbor loop structure for network dismantling\",\"authors\":\"Qingxia Liu , Bang Wang , Jiming Qi , Xianjun Deng\",\"doi\":\"10.1016/j.dcan.2022.09.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nearly all real-world networks are complex networks and usually are in danger of collapse. Therefore, it is crucial to exploit and understand the mechanisms of network attacks and provide better protection for network functionalities. Network dismantling aims to find the smallest set of nodes such that after their removal the network is broken into connected components of sub-extensive size. To overcome the limitations and drawbacks of existing network dismantling methods, this paper focuses on network dismantling problem and proposes a neighbor-loop structure based centrality metric, NL, which achieves a balance between computational efficiency and evaluation accuracy. In addition, we design a novel method combining NL-based nodes-removing, greedy tree-breaking and reinsertion. Moreover, we compare five baseline methods with our algorithm on ten widely used real-world networks and three types of model networks including Erdös-Rényi random networks, Watts-Strogatz small-world networks and Barabási-Albert scale-free networks with different network generation parameters. Experimental results demonstrate that our proposed method outperforms most peer methods by obtaining a minimal set of targeted attack nodes. Furthermore, the insights gained from this study may be of assistance to future practical research into real-world networks.</p></div>\",\"PeriodicalId\":48631,\"journal\":{\"name\":\"Digital Communications and Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352864822001912/pdfft?md5=9b3045bde73e9d3f8278960f267b5e51&pid=1-s2.0-S2352864822001912-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Communications and Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352864822001912\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864822001912","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
A new centrality measure based on neighbor loop structure for network dismantling
Nearly all real-world networks are complex networks and usually are in danger of collapse. Therefore, it is crucial to exploit and understand the mechanisms of network attacks and provide better protection for network functionalities. Network dismantling aims to find the smallest set of nodes such that after their removal the network is broken into connected components of sub-extensive size. To overcome the limitations and drawbacks of existing network dismantling methods, this paper focuses on network dismantling problem and proposes a neighbor-loop structure based centrality metric, NL, which achieves a balance between computational efficiency and evaluation accuracy. In addition, we design a novel method combining NL-based nodes-removing, greedy tree-breaking and reinsertion. Moreover, we compare five baseline methods with our algorithm on ten widely used real-world networks and three types of model networks including Erdös-Rényi random networks, Watts-Strogatz small-world networks and Barabási-Albert scale-free networks with different network generation parameters. Experimental results demonstrate that our proposed method outperforms most peer methods by obtaining a minimal set of targeted attack nodes. Furthermore, the insights gained from this study may be of assistance to future practical research into real-world networks.
期刊介绍:
Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus.
In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field.
In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.