安装在不同地面颜色的双面太阳能组件性能的综合4E研究:特定场地的实验研究

IF 2.1 4区 工程技术 Q3 ENERGY & FUELS Journal of Solar Energy Engineering-transactions of The Asme Pub Date : 2022-08-23 DOI:10.1115/1.4055301
V. Muthu, G. Ramadas
{"title":"安装在不同地面颜色的双面太阳能组件性能的综合4E研究:特定场地的实验研究","authors":"V. Muthu, G. Ramadas","doi":"10.1115/1.4055301","DOIUrl":null,"url":null,"abstract":"\n Solar energy will be the most sought-after source for generating electricity shortly because of its availability in abundance and pollution-free nature. Bifacial PV technology increases the power output through albedo effect. However, the major drawback of PV based power is that the efficiency is very low at less than 25%. The study focuses on the impact of surface color to explore the possibilities of enhancing the efficiency of solar modules considering the different terrace surface available in the residential region. The proposed work is one such attempt where the study is mainly focused on the impact of the surface properties on the extraction of electricity from the solar module without adopting the active techniques. A detailed study on different colors like Black, Green, and White is carried out. The study observed that white surface improves the albedo effect towards the rear surface of the module, thereby improving Energy Production Factor (EPF) and higher Life cycle conversion efficiency (LCE). It is observed that there is a 4.8 % increase in the average efficiency when using white as ground cover as compared to normal reference ground. The comparative study is also carried out for various lifetime period (T) like 10, 15, and 20 years. Calculated the Exergetic cost by considering operating periods like 15, 20, 25, and 30 years with 2%, 5%, and 10% interest rate, and it is observed that after 30 years of operation at 2% interest rate, energetic cost reached its highest value.","PeriodicalId":17124,"journal":{"name":"Journal of Solar Energy Engineering-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A comprehensive 4E study on the performance of Bifacial solar module installed on different ground surface color: an Experimental study on a specific site\",\"authors\":\"V. Muthu, G. Ramadas\",\"doi\":\"10.1115/1.4055301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Solar energy will be the most sought-after source for generating electricity shortly because of its availability in abundance and pollution-free nature. Bifacial PV technology increases the power output through albedo effect. However, the major drawback of PV based power is that the efficiency is very low at less than 25%. The study focuses on the impact of surface color to explore the possibilities of enhancing the efficiency of solar modules considering the different terrace surface available in the residential region. The proposed work is one such attempt where the study is mainly focused on the impact of the surface properties on the extraction of electricity from the solar module without adopting the active techniques. A detailed study on different colors like Black, Green, and White is carried out. The study observed that white surface improves the albedo effect towards the rear surface of the module, thereby improving Energy Production Factor (EPF) and higher Life cycle conversion efficiency (LCE). It is observed that there is a 4.8 % increase in the average efficiency when using white as ground cover as compared to normal reference ground. The comparative study is also carried out for various lifetime period (T) like 10, 15, and 20 years. Calculated the Exergetic cost by considering operating periods like 15, 20, 25, and 30 years with 2%, 5%, and 10% interest rate, and it is observed that after 30 years of operation at 2% interest rate, energetic cost reached its highest value.\",\"PeriodicalId\":17124,\"journal\":{\"name\":\"Journal of Solar Energy Engineering-transactions of The Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solar Energy Engineering-transactions of The Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4055301\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solar Energy Engineering-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4055301","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 2

摘要

由于太阳能的丰富性和无污染性质,它将在短期内成为最受欢迎的发电能源。双面光伏技术通过反照率效应增加功率输出。然而,基于光伏发电的主要缺点是效率非常低,不到25%。研究的重点是表面颜色的影响,以探索提高太阳能组件效率的可能性,考虑到住宅区域不同的露台表面。提出的工作就是这样一种尝试,研究主要集中在表面性质对从太阳能模块提取电力的影响上,而不采用主动技术。对黑、绿、白等不同颜色进行了详细的研究。研究发现,白色表面改善了对组件后表面的反照率效应,从而提高了能量生产因子(EPF)和更高的生命周期转换效率(LCE)。我们观察到,与普通参考地面相比,使用白色地面覆盖物的平均效率提高了4.8%。并对10年、15年、20年等不同生命周期(T)进行了对比研究。考虑15年、20年、25年、30年的运行周期,分别以2%、5%、10%的利率进行了耗能成本计算,发现以2%的利率运行30年后,耗能成本达到最高值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A comprehensive 4E study on the performance of Bifacial solar module installed on different ground surface color: an Experimental study on a specific site
Solar energy will be the most sought-after source for generating electricity shortly because of its availability in abundance and pollution-free nature. Bifacial PV technology increases the power output through albedo effect. However, the major drawback of PV based power is that the efficiency is very low at less than 25%. The study focuses on the impact of surface color to explore the possibilities of enhancing the efficiency of solar modules considering the different terrace surface available in the residential region. The proposed work is one such attempt where the study is mainly focused on the impact of the surface properties on the extraction of electricity from the solar module without adopting the active techniques. A detailed study on different colors like Black, Green, and White is carried out. The study observed that white surface improves the albedo effect towards the rear surface of the module, thereby improving Energy Production Factor (EPF) and higher Life cycle conversion efficiency (LCE). It is observed that there is a 4.8 % increase in the average efficiency when using white as ground cover as compared to normal reference ground. The comparative study is also carried out for various lifetime period (T) like 10, 15, and 20 years. Calculated the Exergetic cost by considering operating periods like 15, 20, 25, and 30 years with 2%, 5%, and 10% interest rate, and it is observed that after 30 years of operation at 2% interest rate, energetic cost reached its highest value.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
26.10%
发文量
98
审稿时长
6.0 months
期刊介绍: The Journal of Solar Energy Engineering - Including Wind Energy and Building Energy Conservation - publishes research papers that contain original work of permanent interest in all areas of solar energy and energy conservation, as well as discussions of policy and regulatory issues that affect renewable energy technologies and their implementation. Papers that do not include original work, but nonetheless present quality analysis or incremental improvements to past work may be published as Technical Briefs. Review papers are accepted but should be discussed with the Editor prior to submission. The Journal also publishes a section called Solar Scenery that features photographs or graphical displays of significant new installations or research facilities.
期刊最新文献
Experimental Analysis of a Solar Air Heater Featuring Multiple Spiral-Shaped Semi-Conical Ribs Granular flow in novel Octet shape-based lattice frame material Design and Performance Evaluation of a Novel Solar Dryer for Drying Potatoes in the Eastern Algerian Sahara Thermal and Electrical Analysis of Organometallic Halide Solar Cells Condensation Heat Transfer Experiments of R410A and R32 in Horizontal Smooth and Enhanced Tubes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1