一种基于深度监督混洗注意力修正卷积神经网络模型的癌症自动检测方案

IF 1.7 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS Automatika Pub Date : 2023-04-05 DOI:10.1080/00051144.2023.2196114
K. T., V. J.
{"title":"一种基于深度监督混洗注意力修正卷积神经网络模型的癌症自动检测方案","authors":"K. T., V. J.","doi":"10.1080/00051144.2023.2196114","DOIUrl":null,"url":null,"abstract":"Cervical malignant growth is the fourth most typical reason for disease demise in women around the world. In developing countries, women don’t approach sufficient screening methods because of the costly procedures to undergo examination regularly, scarce awareness and lack of access to the medical centre. Recently, deep learning-based radiomic methods have been introduced in differentiating vessel invasion from non-vessel invasion in Cervical Cancer (CC) by multi-parametric Magnetic Resonance Imaging (MRI). However, this model doesn’t produce sufficient results. In this work, the MRI images are initially pre-processed using bilateral filtering. After pre-processing, the image is segmented by modified U-Net model in order to identify the cancerous region. Extraction of deep semantic information from images by using residual blocks in the processes of contractions and expansions. The last layer of the contracting route uses tightly coupled convolutions in the second phase to speed up feature recycling and feature propagation. It was inferred from the observations that the proposed model was effective as a predictive tool for detecting vessel invasions in preoperative early stages of CC. Proposed model produces 94.00% detection accuracy which is better than the other existing methods.","PeriodicalId":55412,"journal":{"name":"Automatika","volume":"64 1","pages":"518 - 528"},"PeriodicalIF":1.7000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An automated cervical cancer detection scheme using deeply supervised shuffle attention modified convolutional neural network model\",\"authors\":\"K. T., V. J.\",\"doi\":\"10.1080/00051144.2023.2196114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cervical malignant growth is the fourth most typical reason for disease demise in women around the world. In developing countries, women don’t approach sufficient screening methods because of the costly procedures to undergo examination regularly, scarce awareness and lack of access to the medical centre. Recently, deep learning-based radiomic methods have been introduced in differentiating vessel invasion from non-vessel invasion in Cervical Cancer (CC) by multi-parametric Magnetic Resonance Imaging (MRI). However, this model doesn’t produce sufficient results. In this work, the MRI images are initially pre-processed using bilateral filtering. After pre-processing, the image is segmented by modified U-Net model in order to identify the cancerous region. Extraction of deep semantic information from images by using residual blocks in the processes of contractions and expansions. The last layer of the contracting route uses tightly coupled convolutions in the second phase to speed up feature recycling and feature propagation. It was inferred from the observations that the proposed model was effective as a predictive tool for detecting vessel invasions in preoperative early stages of CC. Proposed model produces 94.00% detection accuracy which is better than the other existing methods.\",\"PeriodicalId\":55412,\"journal\":{\"name\":\"Automatika\",\"volume\":\"64 1\",\"pages\":\"518 - 528\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automatika\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/00051144.2023.2196114\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatika","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/00051144.2023.2196114","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

宫颈恶性生长是世界各地女性疾病死亡的第四大典型原因。在发展中国家,女性没有采用足够的筛查方法,因为定期接受检查的程序成本高昂,意识不足,而且无法进入医疗中心。最近,基于深度学习的放射组学方法被引入,通过多参数磁共振成像(MRI)来区分癌症(CC)的血管侵袭和非血管侵袭。然而,这个模型并没有产生足够的结果。在这项工作中,MRI图像最初使用双边滤波进行预处理。预处理后,通过改进的U-Net模型对图像进行分割,以识别癌区。通过在收缩和展开过程中使用残差块从图像中提取深层语义信息。收缩路径的最后一层在第二阶段使用紧密耦合的卷积来加快特征回收和特征传播。根据观察结果推断,该模型作为CC术前早期血管侵袭的预测工具是有效的。该模型的检测准确率为94.00%,优于其他现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An automated cervical cancer detection scheme using deeply supervised shuffle attention modified convolutional neural network model
Cervical malignant growth is the fourth most typical reason for disease demise in women around the world. In developing countries, women don’t approach sufficient screening methods because of the costly procedures to undergo examination regularly, scarce awareness and lack of access to the medical centre. Recently, deep learning-based radiomic methods have been introduced in differentiating vessel invasion from non-vessel invasion in Cervical Cancer (CC) by multi-parametric Magnetic Resonance Imaging (MRI). However, this model doesn’t produce sufficient results. In this work, the MRI images are initially pre-processed using bilateral filtering. After pre-processing, the image is segmented by modified U-Net model in order to identify the cancerous region. Extraction of deep semantic information from images by using residual blocks in the processes of contractions and expansions. The last layer of the contracting route uses tightly coupled convolutions in the second phase to speed up feature recycling and feature propagation. It was inferred from the observations that the proposed model was effective as a predictive tool for detecting vessel invasions in preoperative early stages of CC. Proposed model produces 94.00% detection accuracy which is better than the other existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automatika
Automatika AUTOMATION & CONTROL SYSTEMS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
4.00
自引率
5.30%
发文量
65
审稿时长
4.5 months
期刊介绍: AUTOMATIKA – Journal for Control, Measurement, Electronics, Computing and Communications is an international scientific journal that publishes scientific and professional papers in the field of automatic control, robotics, measurements, electronics, computing, communications and related areas. Click here for full Focus & Scope. AUTOMATIKA is published since 1960, and since 1991 by KoREMA - Croatian Society for Communications, Computing, Electronics, Measurement and Control, Member of IMEKO and IFAC.
期刊最新文献
Robust synchronization of four-dimensional chaotic finance systems with unknown parametric uncertainties Segmenting and classifying skin lesions using a fruit fly optimization algorithm with a machine learning framework An implementation of inertia control strategy for grid-connected solar system using moth-flame optimization algorithm Empowering diagnosis: an astonishing deep transfer learning approach with fine tuning for precise lung disease classification from CXR images A comparative analysis: optimal node selection in large data block transmission in VANET using various node relay optimization algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1