HUSS:一种理解电子表格语义结构的启发式方法

IF 1.3 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Data Intelligence Pub Date : 2022-11-01 DOI:10.1109/ICKG55886.2022.00049
Xindong Wu, Hao Chen, Chenyang Bu, Shengwei Ji, Zan Zhang, Victor S. Sheng
{"title":"HUSS:一种理解电子表格语义结构的启发式方法","authors":"Xindong Wu, Hao Chen, Chenyang Bu, Shengwei Ji, Zan Zhang, Victor S. Sheng","doi":"10.1109/ICKG55886.2022.00049","DOIUrl":null,"url":null,"abstract":"ABSTRACT Spreadsheets contain a lot of valuable data and have many practical applications. The key technology of these practical applications is how to make machines understand the semantic structure of spreadsheets, e.g., identifying cell function types and discovering relationships between cell pairs. Most existing methods for understanding the semantic structure of spreadsheets do not make use of the semantic information of cells. A few studies do, but they ignore the layout structure information of spreadsheets, which affects the performance of cell function classification and the discovery of different relationship types of cell pairs. In this paper, we propose a Heuristic algorithm for Understanding the Semantic Structure of spreadsheets (HUSS). Specifically, for improving the cell function classification, we propose an error correction mechanism (ECM) based on an existing cell function classification model [11] and the layout features of spreadsheets. For improving the table structure analysis, we propose five types of heuristic rules to extract four different types of cell pairs, based on the cell style and spatial location information. Our experimental results on five real-world datasets demonstrate that HUSS can effectively understand the semantic structure of spreadsheets and outperforms corresponding baselines.","PeriodicalId":34023,"journal":{"name":"Data Intelligence","volume":"5 1","pages":"537-559"},"PeriodicalIF":1.3000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HUSS: A Heuristic Method for Understanding the Semantic Structure of Spreadsheets\",\"authors\":\"Xindong Wu, Hao Chen, Chenyang Bu, Shengwei Ji, Zan Zhang, Victor S. Sheng\",\"doi\":\"10.1109/ICKG55886.2022.00049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Spreadsheets contain a lot of valuable data and have many practical applications. The key technology of these practical applications is how to make machines understand the semantic structure of spreadsheets, e.g., identifying cell function types and discovering relationships between cell pairs. Most existing methods for understanding the semantic structure of spreadsheets do not make use of the semantic information of cells. A few studies do, but they ignore the layout structure information of spreadsheets, which affects the performance of cell function classification and the discovery of different relationship types of cell pairs. In this paper, we propose a Heuristic algorithm for Understanding the Semantic Structure of spreadsheets (HUSS). Specifically, for improving the cell function classification, we propose an error correction mechanism (ECM) based on an existing cell function classification model [11] and the layout features of spreadsheets. For improving the table structure analysis, we propose five types of heuristic rules to extract four different types of cell pairs, based on the cell style and spatial location information. Our experimental results on five real-world datasets demonstrate that HUSS can effectively understand the semantic structure of spreadsheets and outperforms corresponding baselines.\",\"PeriodicalId\":34023,\"journal\":{\"name\":\"Data Intelligence\",\"volume\":\"5 1\",\"pages\":\"537-559\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/ICKG55886.2022.00049\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/ICKG55886.2022.00049","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

电子表格包含了大量有价值的数据,有许多实际应用。这些实际应用的关键技术是如何使机器理解电子表格的语义结构,例如,识别单元格功能类型和发现单元格对之间的关系。大多数现有的理解电子表格语义结构的方法都没有利用单元格的语义信息。虽然有一些研究做到了这一点,但它们忽略了电子表格的布局结构信息,从而影响了单元格功能分类的性能和单元格对不同关系类型的发现。本文提出了一种理解电子表格语义结构的启发式算法(HUSS)。具体来说,为了改进单元格功能分类,我们提出了一种基于现有单元格功能分类模型[11]和电子表格布局特征的纠错机制(ECM)。为了改进表结构分析,我们提出了基于单元格样式和空间位置信息的五种启发式规则来提取四种不同类型的单元格对。我们在五个真实数据集上的实验结果表明,HUSS可以有效地理解电子表格的语义结构,并且优于相应的基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HUSS: A Heuristic Method for Understanding the Semantic Structure of Spreadsheets
ABSTRACT Spreadsheets contain a lot of valuable data and have many practical applications. The key technology of these practical applications is how to make machines understand the semantic structure of spreadsheets, e.g., identifying cell function types and discovering relationships between cell pairs. Most existing methods for understanding the semantic structure of spreadsheets do not make use of the semantic information of cells. A few studies do, but they ignore the layout structure information of spreadsheets, which affects the performance of cell function classification and the discovery of different relationship types of cell pairs. In this paper, we propose a Heuristic algorithm for Understanding the Semantic Structure of spreadsheets (HUSS). Specifically, for improving the cell function classification, we propose an error correction mechanism (ECM) based on an existing cell function classification model [11] and the layout features of spreadsheets. For improving the table structure analysis, we propose five types of heuristic rules to extract four different types of cell pairs, based on the cell style and spatial location information. Our experimental results on five real-world datasets demonstrate that HUSS can effectively understand the semantic structure of spreadsheets and outperforms corresponding baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Data Intelligence
Data Intelligence COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
6.50
自引率
15.40%
发文量
40
审稿时长
8 weeks
期刊最新文献
The Limitations and Ethical Considerations of ChatGPT Rule Mining Trends from 1987 to 2022: A Bibliometric Analysis and Visualization Classification and quantification of timestamp data quality issues and its impact on data quality outcome BIKAS: Bio-Inspired Knowledge Acquisition and Simulacrum—A Knowledge Database to Support Multifunctional Design Concept Generation Exploring Attentive Siamese LSTM for Low-Resource Text Plagiarism Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1