{"title":"液压成形双极板的数值研究","authors":"Ayotunde Olayinka, W. J. Emblom","doi":"10.1504/ijmpt.2021.117032","DOIUrl":null,"url":null,"abstract":"Simulations of forming processes using LS-DYNA and other nonlinear finite element software packages enables manufacturers to optimise processes without the attending waste associated with performing multiple actual processes. The goal of this study was to use finite element analysis to investigate microscale sheet hydroforming (MSSH) of annealed AISI 304 stainless steel for producing bipolar plates for proton exchange membrane fuel cells (PEMFC) based on the material properties of the blank that were obtained from hydraulic bulge testing. Two die geometries were used to investigate the effect of hydroforming pressure and channel width on the distribution of stress and strain across the flow field of the hydroformed channels, sheet thinning and the thickness distribution for the annealed AISI 304 sheet metal blanks. The simulation results were verified using experimental results. The results show that FEA technique accurately predicts the behaviour of the AISI 304 bank formed using MSSH.","PeriodicalId":14167,"journal":{"name":"International Journal of Materials & Product Technology","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical investigation of bipolar plates manufactured using hydroforming process\",\"authors\":\"Ayotunde Olayinka, W. J. Emblom\",\"doi\":\"10.1504/ijmpt.2021.117032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simulations of forming processes using LS-DYNA and other nonlinear finite element software packages enables manufacturers to optimise processes without the attending waste associated with performing multiple actual processes. The goal of this study was to use finite element analysis to investigate microscale sheet hydroforming (MSSH) of annealed AISI 304 stainless steel for producing bipolar plates for proton exchange membrane fuel cells (PEMFC) based on the material properties of the blank that were obtained from hydraulic bulge testing. Two die geometries were used to investigate the effect of hydroforming pressure and channel width on the distribution of stress and strain across the flow field of the hydroformed channels, sheet thinning and the thickness distribution for the annealed AISI 304 sheet metal blanks. The simulation results were verified using experimental results. The results show that FEA technique accurately predicts the behaviour of the AISI 304 bank formed using MSSH.\",\"PeriodicalId\":14167,\"journal\":{\"name\":\"International Journal of Materials & Product Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Materials & Product Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1504/ijmpt.2021.117032\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Materials & Product Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1504/ijmpt.2021.117032","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Numerical investigation of bipolar plates manufactured using hydroforming process
Simulations of forming processes using LS-DYNA and other nonlinear finite element software packages enables manufacturers to optimise processes without the attending waste associated with performing multiple actual processes. The goal of this study was to use finite element analysis to investigate microscale sheet hydroforming (MSSH) of annealed AISI 304 stainless steel for producing bipolar plates for proton exchange membrane fuel cells (PEMFC) based on the material properties of the blank that were obtained from hydraulic bulge testing. Two die geometries were used to investigate the effect of hydroforming pressure and channel width on the distribution of stress and strain across the flow field of the hydroformed channels, sheet thinning and the thickness distribution for the annealed AISI 304 sheet metal blanks. The simulation results were verified using experimental results. The results show that FEA technique accurately predicts the behaviour of the AISI 304 bank formed using MSSH.
期刊介绍:
The IJMPT is a refereed and authoritative publication which provides a forum for the exchange of information and ideas between materials academics and engineers working in university research departments and research institutes, and manufacturing, marketing and process managers, designers, technologists and research and development engineers working in industry.