智能手机截图图像中表情符号检测的鲁棒算法

IF 0.5 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of ICT Research and Applications Pub Date : 2019-12-31 DOI:10.5614/itbj.ict.res.appl.2019.13.3.2
Bilal Bataineh, M. Y. Shambour
{"title":"智能手机截图图像中表情符号检测的鲁棒算法","authors":"Bilal Bataineh, M. Y. Shambour","doi":"10.5614/itbj.ict.res.appl.2019.13.3.2","DOIUrl":null,"url":null,"abstract":"The increasing use of smartphones and social media apps for communication results in a massive number of screenshot images. These images enrich the written language through text and emojis. In this regard, several studies in the image analysis field have considered text. However, they ignored the use of emojis. In this study, a robust two-stage algorithm for detecting emojis in screenshot images is proposed. The first stage localizes the regions of candidate emojis by using the proposed RGB-channel analysis method followed by a connected component method with a set of proposed rules. In the second verification stage, each of the emojis and non-emojis are classified by using proposed features with a decision tree classifier. Experiments were conducted to evaluate each stage independently and assess the performance of the proposed algorithm completely by using a self-collected dataset. The results showed that the proposed RGB-channel analysis method achieved better performance than the Niblack and Sauvola methods. Moreover, the proposed feature extraction method with decision tree classifier achieved more satisfactory performance than the LBP feature extraction method with all Bayesian network, perceptron neural network, and decision table rules. Overall, the proposed algorithm exhibited high efficiency in detecting emojis in screenshot images.","PeriodicalId":42785,"journal":{"name":"Journal of ICT Research and Applications","volume":"13 1","pages":"192-212"},"PeriodicalIF":0.5000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Robust Algorithm for Emoji Detection in Smartphone Screenshot Images\",\"authors\":\"Bilal Bataineh, M. Y. Shambour\",\"doi\":\"10.5614/itbj.ict.res.appl.2019.13.3.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing use of smartphones and social media apps for communication results in a massive number of screenshot images. These images enrich the written language through text and emojis. In this regard, several studies in the image analysis field have considered text. However, they ignored the use of emojis. In this study, a robust two-stage algorithm for detecting emojis in screenshot images is proposed. The first stage localizes the regions of candidate emojis by using the proposed RGB-channel analysis method followed by a connected component method with a set of proposed rules. In the second verification stage, each of the emojis and non-emojis are classified by using proposed features with a decision tree classifier. Experiments were conducted to evaluate each stage independently and assess the performance of the proposed algorithm completely by using a self-collected dataset. The results showed that the proposed RGB-channel analysis method achieved better performance than the Niblack and Sauvola methods. Moreover, the proposed feature extraction method with decision tree classifier achieved more satisfactory performance than the LBP feature extraction method with all Bayesian network, perceptron neural network, and decision table rules. Overall, the proposed algorithm exhibited high efficiency in detecting emojis in screenshot images.\",\"PeriodicalId\":42785,\"journal\":{\"name\":\"Journal of ICT Research and Applications\",\"volume\":\"13 1\",\"pages\":\"192-212\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of ICT Research and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5614/itbj.ict.res.appl.2019.13.3.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ICT Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/itbj.ict.res.appl.2019.13.3.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2

摘要

越来越多地使用智能手机和社交媒体应用程序进行交流,导致大量的截图图像。这些图像通过文字和表情符号丰富了书面语言。在这方面,图像分析领域的一些研究已经考虑了文本。然而,他们忽略了表情符号的使用。在本研究中,提出了一种鲁棒的两阶段算法来检测截图图像中的表情符号。第一阶段使用提出的rgb通道分析方法定位候选表情符号的区域,然后使用一组建议规则的连接组件方法定位候选表情符号。在第二个验证阶段,使用决策树分类器对每个表情符号和非表情符号进行分类。实验对每个阶段进行独立评估,并使用自收集的数据集对所提算法的性能进行全面评估。结果表明,所提出的rgb通道分析方法比Niblack和Sauvola方法具有更好的性能。此外,基于决策树分类器的特征提取方法比基于贝叶斯网络、感知器神经网络和决策表规则的LBP特征提取方法取得了更满意的性能。总体而言,该算法在检测截图图像中的表情符号方面表现出较高的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Robust Algorithm for Emoji Detection in Smartphone Screenshot Images
The increasing use of smartphones and social media apps for communication results in a massive number of screenshot images. These images enrich the written language through text and emojis. In this regard, several studies in the image analysis field have considered text. However, they ignored the use of emojis. In this study, a robust two-stage algorithm for detecting emojis in screenshot images is proposed. The first stage localizes the regions of candidate emojis by using the proposed RGB-channel analysis method followed by a connected component method with a set of proposed rules. In the second verification stage, each of the emojis and non-emojis are classified by using proposed features with a decision tree classifier. Experiments were conducted to evaluate each stage independently and assess the performance of the proposed algorithm completely by using a self-collected dataset. The results showed that the proposed RGB-channel analysis method achieved better performance than the Niblack and Sauvola methods. Moreover, the proposed feature extraction method with decision tree classifier achieved more satisfactory performance than the LBP feature extraction method with all Bayesian network, perceptron neural network, and decision table rules. Overall, the proposed algorithm exhibited high efficiency in detecting emojis in screenshot images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of ICT Research and Applications
Journal of ICT Research and Applications COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
1.60
自引率
0.00%
发文量
13
审稿时长
24 weeks
期刊介绍: Journal of ICT Research and Applications welcomes full research articles in the area of Information and Communication Technology from the following subject areas: Information Theory, Signal Processing, Electronics, Computer Network, Telecommunication, Wireless & Mobile Computing, Internet Technology, Multimedia, Software Engineering, Computer Science, Information System and Knowledge Management. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.
期刊最新文献
Smart Card-based Access Control System using Isolated Many-to-Many Authentication Scheme for Electric Vehicle Charging Stations The Evaluation of DyHATR Performance for Dynamic Heterogeneous Graphs Machine Learning-based Early Detection and Prognosis of the Covid-19 Pandemic Improving Robustness Using MixUp and CutMix Augmentation for Corn Leaf Diseases Classification based on ConvMixer Architecture Generative Adversarial Networks Based Scene Generation on Indian Driving Dataset
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1