{"title":"智能手机截图图像中表情符号检测的鲁棒算法","authors":"Bilal Bataineh, M. Y. Shambour","doi":"10.5614/itbj.ict.res.appl.2019.13.3.2","DOIUrl":null,"url":null,"abstract":"The increasing use of smartphones and social media apps for communication results in a massive number of screenshot images. These images enrich the written language through text and emojis. In this regard, several studies in the image analysis field have considered text. However, they ignored the use of emojis. In this study, a robust two-stage algorithm for detecting emojis in screenshot images is proposed. The first stage localizes the regions of candidate emojis by using the proposed RGB-channel analysis method followed by a connected component method with a set of proposed rules. In the second verification stage, each of the emojis and non-emojis are classified by using proposed features with a decision tree classifier. Experiments were conducted to evaluate each stage independently and assess the performance of the proposed algorithm completely by using a self-collected dataset. The results showed that the proposed RGB-channel analysis method achieved better performance than the Niblack and Sauvola methods. Moreover, the proposed feature extraction method with decision tree classifier achieved more satisfactory performance than the LBP feature extraction method with all Bayesian network, perceptron neural network, and decision table rules. Overall, the proposed algorithm exhibited high efficiency in detecting emojis in screenshot images.","PeriodicalId":42785,"journal":{"name":"Journal of ICT Research and Applications","volume":"13 1","pages":"192-212"},"PeriodicalIF":0.5000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Robust Algorithm for Emoji Detection in Smartphone Screenshot Images\",\"authors\":\"Bilal Bataineh, M. Y. Shambour\",\"doi\":\"10.5614/itbj.ict.res.appl.2019.13.3.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing use of smartphones and social media apps for communication results in a massive number of screenshot images. These images enrich the written language through text and emojis. In this regard, several studies in the image analysis field have considered text. However, they ignored the use of emojis. In this study, a robust two-stage algorithm for detecting emojis in screenshot images is proposed. The first stage localizes the regions of candidate emojis by using the proposed RGB-channel analysis method followed by a connected component method with a set of proposed rules. In the second verification stage, each of the emojis and non-emojis are classified by using proposed features with a decision tree classifier. Experiments were conducted to evaluate each stage independently and assess the performance of the proposed algorithm completely by using a self-collected dataset. The results showed that the proposed RGB-channel analysis method achieved better performance than the Niblack and Sauvola methods. Moreover, the proposed feature extraction method with decision tree classifier achieved more satisfactory performance than the LBP feature extraction method with all Bayesian network, perceptron neural network, and decision table rules. Overall, the proposed algorithm exhibited high efficiency in detecting emojis in screenshot images.\",\"PeriodicalId\":42785,\"journal\":{\"name\":\"Journal of ICT Research and Applications\",\"volume\":\"13 1\",\"pages\":\"192-212\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of ICT Research and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5614/itbj.ict.res.appl.2019.13.3.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ICT Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/itbj.ict.res.appl.2019.13.3.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A Robust Algorithm for Emoji Detection in Smartphone Screenshot Images
The increasing use of smartphones and social media apps for communication results in a massive number of screenshot images. These images enrich the written language through text and emojis. In this regard, several studies in the image analysis field have considered text. However, they ignored the use of emojis. In this study, a robust two-stage algorithm for detecting emojis in screenshot images is proposed. The first stage localizes the regions of candidate emojis by using the proposed RGB-channel analysis method followed by a connected component method with a set of proposed rules. In the second verification stage, each of the emojis and non-emojis are classified by using proposed features with a decision tree classifier. Experiments were conducted to evaluate each stage independently and assess the performance of the proposed algorithm completely by using a self-collected dataset. The results showed that the proposed RGB-channel analysis method achieved better performance than the Niblack and Sauvola methods. Moreover, the proposed feature extraction method with decision tree classifier achieved more satisfactory performance than the LBP feature extraction method with all Bayesian network, perceptron neural network, and decision table rules. Overall, the proposed algorithm exhibited high efficiency in detecting emojis in screenshot images.
期刊介绍:
Journal of ICT Research and Applications welcomes full research articles in the area of Information and Communication Technology from the following subject areas: Information Theory, Signal Processing, Electronics, Computer Network, Telecommunication, Wireless & Mobile Computing, Internet Technology, Multimedia, Software Engineering, Computer Science, Information System and Knowledge Management. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.