高频雷达反演台风波参数不确定性的数值研究

IF 0.4 4区 工程技术 Q4 ENGINEERING, MULTIDISCIPLINARY Journal of Marine Science and Technology-Taiwan Pub Date : 2022-12-08 DOI:10.51400/2709-6998.2586
T. Dao, Hwa Chien
{"title":"高频雷达反演台风波参数不确定性的数值研究","authors":"T. Dao, Hwa Chien","doi":"10.51400/2709-6998.2586","DOIUrl":null,"url":null,"abstract":"The aim of this study was to identify the sources of uncertainties of typhoon wave field monitoring using HF radar and to quantitatively assess the bias of the wave parameters, such as significant wave height and mean period, retrieved under various conditions. The strategy was to apply a purely numerical simulation of the Doppler-range spectra and then compare the estimation results to the target. For the quantitative investigation, a numerical test-bed was established. The test-bed was used to simulate the Doppler spectra based on Barrick's (1972) theory by using the input of the directional wave spectra. The typhoon wave spectra were hindcasted using a third-generation wave model. Initially, the uncertainty source from Barrick's theory was identified when comparing the deviations of the estimation results obtained from the idealized case of steady and homogenous fields. The accuracy of the wave height and the mean period was found to be significantly influenced by the angle between the radar-looking direction and the wave direction. Furthermore, two conceptual numerical experiments were designed to evaluate the uncertainties owing to the rotation and the translation of the typhoon wind fields, respectively. The first design focussed on the upper-right quadrant around the maximum wind radius of the typhoon using a virtual radar network that moved along with the typhoon. The second one was a more realistic design in that the virtual radar stations were located on the coastline. The scatter index of the wave height estimated from the second design was found to be approximately twice larger than that obtained using the first design. It was 25% larger for the uncertainty of the mean period. This demonstrated that except for the error from theory, the uncertainty of the estimated wave parameters in type 1 was influenced by the change in the wave generated by the wind field, while that of type 2 was affected by the complicated typhoon wavefield, including the mixed wind waves and swells. The results showed that the error of 0.02 of the scatter index in the case of the wave height could be identified even when no system noise was considered. This error was attributed to the simplification of the coupling coefficient and the weighting function in Barrick's theory. The error was direction dependent and non-negligible. For the typhoon cases, the heterogeneity and rapid changes in the spatial distribution of the wavefield under the influence of the rotating wind fields were the challenging factors for the HF radar wave parameter retrieval. The error increased further under such conditions.","PeriodicalId":50149,"journal":{"name":"Journal of Marine Science and Technology-Taiwan","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Investigation Of The Uncertainty Of Typhoon Wave Parameters Retrieval Using HF Radar\",\"authors\":\"T. Dao, Hwa Chien\",\"doi\":\"10.51400/2709-6998.2586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this study was to identify the sources of uncertainties of typhoon wave field monitoring using HF radar and to quantitatively assess the bias of the wave parameters, such as significant wave height and mean period, retrieved under various conditions. The strategy was to apply a purely numerical simulation of the Doppler-range spectra and then compare the estimation results to the target. For the quantitative investigation, a numerical test-bed was established. The test-bed was used to simulate the Doppler spectra based on Barrick's (1972) theory by using the input of the directional wave spectra. The typhoon wave spectra were hindcasted using a third-generation wave model. Initially, the uncertainty source from Barrick's theory was identified when comparing the deviations of the estimation results obtained from the idealized case of steady and homogenous fields. The accuracy of the wave height and the mean period was found to be significantly influenced by the angle between the radar-looking direction and the wave direction. Furthermore, two conceptual numerical experiments were designed to evaluate the uncertainties owing to the rotation and the translation of the typhoon wind fields, respectively. The first design focussed on the upper-right quadrant around the maximum wind radius of the typhoon using a virtual radar network that moved along with the typhoon. The second one was a more realistic design in that the virtual radar stations were located on the coastline. The scatter index of the wave height estimated from the second design was found to be approximately twice larger than that obtained using the first design. It was 25% larger for the uncertainty of the mean period. This demonstrated that except for the error from theory, the uncertainty of the estimated wave parameters in type 1 was influenced by the change in the wave generated by the wind field, while that of type 2 was affected by the complicated typhoon wavefield, including the mixed wind waves and swells. The results showed that the error of 0.02 of the scatter index in the case of the wave height could be identified even when no system noise was considered. This error was attributed to the simplification of the coupling coefficient and the weighting function in Barrick's theory. The error was direction dependent and non-negligible. For the typhoon cases, the heterogeneity and rapid changes in the spatial distribution of the wavefield under the influence of the rotating wind fields were the challenging factors for the HF radar wave parameter retrieval. The error increased further under such conditions.\",\"PeriodicalId\":50149,\"journal\":{\"name\":\"Journal of Marine Science and Technology-Taiwan\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Marine Science and Technology-Taiwan\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.51400/2709-6998.2586\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Science and Technology-Taiwan","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.51400/2709-6998.2586","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是找出高频雷达台风波场监测的不确定性来源,并定量评估在不同条件下反演的有效波高和平均周期等波浪参数的偏差。该策略是对多普勒光谱进行纯粹的数值模拟,然后将估计结果与目标进行比较。为了进行定量研究,建立了数值试验台。该试验台基于Barrick(1972)理论,采用定向波谱输入,模拟多普勒谱。利用第三代波浪模式反演了台风波浪谱。首先,通过比较稳态和均匀场的理想情况下的估计结果的偏差,确定了Barrick理论的不确定性来源。波高和平均周期的精度受到雷达观测方向与波向夹角的显著影响。此外,设计了两个概念数值实验,分别评估台风风场的旋转和平移所造成的不确定性。第一个设计集中在台风最大风半径周围的右上象限,使用一个随台风移动的虚拟雷达网络。第二个是一个更现实的设计,虚拟雷达站位于海岸线上。用第二种设计估计的波高散射指数比用第一种设计估计的波高散射指数大约大两倍。平均周期的不确定性要大25%这表明,除理论误差外,1型台风波浪参数的不确定性主要受风场产生的波浪变化的影响,而2型台风波浪参数的不确定性主要受复杂台风波场的影响,包括风浪和浪涌的混合。结果表明,在不考虑系统噪声的情况下,散射指数在波高情况下的误差可识别为0.02。这种误差是由于巴里克理论中对耦合系数和权重函数的简化造成的。误差与方向有关,不可忽略。在台风条件下,旋转风场影响下波场空间分布的非均匀性和快速变化是高频雷达波参数反演的挑战因素。在这种条件下,误差进一步增大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical Investigation Of The Uncertainty Of Typhoon Wave Parameters Retrieval Using HF Radar
The aim of this study was to identify the sources of uncertainties of typhoon wave field monitoring using HF radar and to quantitatively assess the bias of the wave parameters, such as significant wave height and mean period, retrieved under various conditions. The strategy was to apply a purely numerical simulation of the Doppler-range spectra and then compare the estimation results to the target. For the quantitative investigation, a numerical test-bed was established. The test-bed was used to simulate the Doppler spectra based on Barrick's (1972) theory by using the input of the directional wave spectra. The typhoon wave spectra were hindcasted using a third-generation wave model. Initially, the uncertainty source from Barrick's theory was identified when comparing the deviations of the estimation results obtained from the idealized case of steady and homogenous fields. The accuracy of the wave height and the mean period was found to be significantly influenced by the angle between the radar-looking direction and the wave direction. Furthermore, two conceptual numerical experiments were designed to evaluate the uncertainties owing to the rotation and the translation of the typhoon wind fields, respectively. The first design focussed on the upper-right quadrant around the maximum wind radius of the typhoon using a virtual radar network that moved along with the typhoon. The second one was a more realistic design in that the virtual radar stations were located on the coastline. The scatter index of the wave height estimated from the second design was found to be approximately twice larger than that obtained using the first design. It was 25% larger for the uncertainty of the mean period. This demonstrated that except for the error from theory, the uncertainty of the estimated wave parameters in type 1 was influenced by the change in the wave generated by the wind field, while that of type 2 was affected by the complicated typhoon wavefield, including the mixed wind waves and swells. The results showed that the error of 0.02 of the scatter index in the case of the wave height could be identified even when no system noise was considered. This error was attributed to the simplification of the coupling coefficient and the weighting function in Barrick's theory. The error was direction dependent and non-negligible. For the typhoon cases, the heterogeneity and rapid changes in the spatial distribution of the wavefield under the influence of the rotating wind fields were the challenging factors for the HF radar wave parameter retrieval. The error increased further under such conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
33
审稿时长
12 months
期刊介绍: The Journal of Marine Science and Technology (JMST), presently indexed in EI and SCI Expanded, publishes original, high-quality, peer-reviewed research papers on marine studies including engineering, pure and applied science, and technology. The full text of the published papers is also made accessible at the JMST website to allow a rapid circulation.
期刊最新文献
Safe towing operation and navigation for towed barge improved by active AIS with solar energy Correction to: Path-following control of a ship by pushing using a single autonomous tugboat Analysis of ship trajectory during periodically steady turning in waves Research on the parametric rolling of the KCS container ship Stochastic stabilization and destabilization of ship maneuvering motion by multiplicative noise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1