{"title":"基于应变梯度理论的尺寸相关纳米球形压力容器","authors":"E. Zarezadeh, M. Najafzadeh, A. Barati","doi":"10.22059/JCAMECH.2021.322571.612","DOIUrl":null,"url":null,"abstract":"This study investigates the effect of size scale material parameters on stress distribution and radial displacement of nanosphere based on strain gradient theory. This model is more capable of studying mechanical behavior than classical elasticity theory as the size scale effect of the nanosphere is also considered. Minimum total potential energy is used to derive governing differential equation of nanosphere under internal hydrostatic pressure. Using the efficient numerical generalized differential quadrature (GDQ) method, the governing equation and corresponding boundary conditions are solved. The classical elasticity equation is obtained by setting the value of size scale material parameters to zero. With the comparison of these theories, the importance of the size scale material parameters is achieved. It is found that the radial displacement of nanosphere predicted by strain gradient theory is less than those predicted by classical elasticity theory but comparing the distribution of stress components along radius is more complex. The effect of the size of the nanosphere on the radial stress components is also studied. With an increasing outer radius of the nanosphere, the mechanical behavior predicted by strain gradient theory tends toward those in classical elasticity theory.","PeriodicalId":37801,"journal":{"name":"Applied and Computational Mechanics","volume":"52 1","pages":"307-319"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Size dependent nano-spherical pressure vessels based on strain gradient theory\",\"authors\":\"E. Zarezadeh, M. Najafzadeh, A. Barati\",\"doi\":\"10.22059/JCAMECH.2021.322571.612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the effect of size scale material parameters on stress distribution and radial displacement of nanosphere based on strain gradient theory. This model is more capable of studying mechanical behavior than classical elasticity theory as the size scale effect of the nanosphere is also considered. Minimum total potential energy is used to derive governing differential equation of nanosphere under internal hydrostatic pressure. Using the efficient numerical generalized differential quadrature (GDQ) method, the governing equation and corresponding boundary conditions are solved. The classical elasticity equation is obtained by setting the value of size scale material parameters to zero. With the comparison of these theories, the importance of the size scale material parameters is achieved. It is found that the radial displacement of nanosphere predicted by strain gradient theory is less than those predicted by classical elasticity theory but comparing the distribution of stress components along radius is more complex. The effect of the size of the nanosphere on the radial stress components is also studied. With an increasing outer radius of the nanosphere, the mechanical behavior predicted by strain gradient theory tends toward those in classical elasticity theory.\",\"PeriodicalId\":37801,\"journal\":{\"name\":\"Applied and Computational Mechanics\",\"volume\":\"52 1\",\"pages\":\"307-319\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22059/JCAMECH.2021.322571.612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22059/JCAMECH.2021.322571.612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
Size dependent nano-spherical pressure vessels based on strain gradient theory
This study investigates the effect of size scale material parameters on stress distribution and radial displacement of nanosphere based on strain gradient theory. This model is more capable of studying mechanical behavior than classical elasticity theory as the size scale effect of the nanosphere is also considered. Minimum total potential energy is used to derive governing differential equation of nanosphere under internal hydrostatic pressure. Using the efficient numerical generalized differential quadrature (GDQ) method, the governing equation and corresponding boundary conditions are solved. The classical elasticity equation is obtained by setting the value of size scale material parameters to zero. With the comparison of these theories, the importance of the size scale material parameters is achieved. It is found that the radial displacement of nanosphere predicted by strain gradient theory is less than those predicted by classical elasticity theory but comparing the distribution of stress components along radius is more complex. The effect of the size of the nanosphere on the radial stress components is also studied. With an increasing outer radius of the nanosphere, the mechanical behavior predicted by strain gradient theory tends toward those in classical elasticity theory.
期刊介绍:
The ACM journal covers a broad spectrum of topics in all fields of applied and computational mechanics with special emphasis on mathematical modelling and numerical simulations with experimental support, if relevant. Our audience is the international scientific community, academics as well as engineers interested in such disciplines. Original research papers falling into the following areas are considered for possible publication: solid mechanics, mechanics of materials, thermodynamics, biomechanics and mechanobiology, fluid-structure interaction, dynamics of multibody systems, mechatronics, vibrations and waves, reliability and durability of structures, structural damage and fracture mechanics, heterogenous media and multiscale problems, structural mechanics, experimental methods in mechanics. This list is neither exhaustive nor fixed.