Achmad Rizal, Risanuri Hidayat, Hanung Adi Nugroho, Willy Anugrah Cahyadi
{"title":"利用多分辨率Higuchi分形维数测量进行肺音分类","authors":"Achmad Rizal, Risanuri Hidayat, Hanung Adi Nugroho, Willy Anugrah Cahyadi","doi":"10.11591/ijece.v13i5.pp5091-5100","DOIUrl":null,"url":null,"abstract":"<span lang=\"EN-GB\">Lung sound is one indicator of abnormalities in the lungs and respiratory tract. Research for automatic lung sound classification has become one of the interests for researchers because lung disease is one of the diseases with the most sufferers in the world. The use of lung sounds as a source of information because of the ease in data acquisition and auscultation is a standard method in examining pulmonary function. This study simulated the potential use of Higuchi fractal dimension (HFD) as a feature extraction method for lung sound classification. HFD calculations were run on a series of </span><em><span lang=\"EN-GB\">k</span></em><span lang=\"EN-GB\"> values to generate some HFD values as features. According to the simulation results, the proposed method could produce an accuracy of up to 97.98% for five classes of lung sound data. The results also suggested that the shift in HFD values over the selection of a time interval </span><em><span lang=\"EN-GB\">k</span></em><span lang=\"EN-GB\"> can be used for lung sound classification.</span>","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lung sound classification using multiresolution Higuchi fractal dimension measurement\",\"authors\":\"Achmad Rizal, Risanuri Hidayat, Hanung Adi Nugroho, Willy Anugrah Cahyadi\",\"doi\":\"10.11591/ijece.v13i5.pp5091-5100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<span lang=\\\"EN-GB\\\">Lung sound is one indicator of abnormalities in the lungs and respiratory tract. Research for automatic lung sound classification has become one of the interests for researchers because lung disease is one of the diseases with the most sufferers in the world. The use of lung sounds as a source of information because of the ease in data acquisition and auscultation is a standard method in examining pulmonary function. This study simulated the potential use of Higuchi fractal dimension (HFD) as a feature extraction method for lung sound classification. HFD calculations were run on a series of </span><em><span lang=\\\"EN-GB\\\">k</span></em><span lang=\\\"EN-GB\\\"> values to generate some HFD values as features. According to the simulation results, the proposed method could produce an accuracy of up to 97.98% for five classes of lung sound data. The results also suggested that the shift in HFD values over the selection of a time interval </span><em><span lang=\\\"EN-GB\\\">k</span></em><span lang=\\\"EN-GB\\\"> can be used for lung sound classification.</span>\",\"PeriodicalId\":38060,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijece.v13i5.pp5091-5100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijece.v13i5.pp5091-5100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
Lung sound classification using multiresolution Higuchi fractal dimension measurement
Lung sound is one indicator of abnormalities in the lungs and respiratory tract. Research for automatic lung sound classification has become one of the interests for researchers because lung disease is one of the diseases with the most sufferers in the world. The use of lung sounds as a source of information because of the ease in data acquisition and auscultation is a standard method in examining pulmonary function. This study simulated the potential use of Higuchi fractal dimension (HFD) as a feature extraction method for lung sound classification. HFD calculations were run on a series of k values to generate some HFD values as features. According to the simulation results, the proposed method could produce an accuracy of up to 97.98% for five classes of lung sound data. The results also suggested that the shift in HFD values over the selection of a time interval k can be used for lung sound classification.
期刊介绍:
International Journal of Electrical and Computer Engineering (IJECE) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: -Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation, Medical Imaging Equipment and Techniques, Biomedical Imaging and Image Processing, Biomechanics and Rehabilitation Engineering, Biomaterials and Drug Delivery Systems; -Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction, Electromagnetic Compatibility, High Voltage Insulation Technologies, High Voltage Apparatuses, Lightning Detection and Protection, Power System Analysis, SCADA, Electrical Measurements; -Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging, Distributed Platform, Communication Network and Systems, Telematics Services and Security Network; -Control[...] -Computer and Informatics[...]