视频触发脑电图情绪公共数据库和当前方法:一项调查

Wanrou Hu, G. Huang, Linling Li, Li Zhang, Zhiguo Zhang, Zhen Liang
{"title":"视频触发脑电图情绪公共数据库和当前方法:一项调查","authors":"Wanrou Hu, G. Huang, Linling Li, Li Zhang, Zhiguo Zhang, Zhen Liang","doi":"10.26599/BSA.2020.9050026","DOIUrl":null,"url":null,"abstract":"Emotions, formed in the process of perceiving external environment, directly affect human daily life, such as social interaction, work efficiency, physical wellness, and mental health. In recent decades, emotion recognition has become a promising research direction with significant application values. Taking the advantages of electroencephalogram (EEG) signals (i.e., high time resolution) and video‐based external emotion evoking (i.e., rich media information), video‐triggered emotion recognition with EEG signals has been proven as a useful tool to conduct emotion‐related studies in a laboratory environment, which provides constructive technical supports for establishing real‐time emotion interaction systems. In this paper, we will focus on video‐triggered EEG‐based emotion recognition and present a systematical introduction of the current available video‐triggered EEG‐based emotion databases with the corresponding analysis methods. First, current video‐triggered EEG databases for emotion recognition (e.g., DEAP, MAHNOB‐HCI, SEED series databases) will be presented with full details. Then, the commonly used EEG feature extraction, feature selection, and modeling methods in video‐triggered EEG‐based emotion recognition will be systematically summarized and a brief review of current situation about video‐triggered EEG‐based emotion studies will be provided. Finally, the limitations and possible prospects of the existing video‐triggered EEG‐emotion databases will be fully discussed.","PeriodicalId":67062,"journal":{"name":"Brain Science Advances","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Video‐triggered EEG‐emotion public databases and current methods: A survey\",\"authors\":\"Wanrou Hu, G. Huang, Linling Li, Li Zhang, Zhiguo Zhang, Zhen Liang\",\"doi\":\"10.26599/BSA.2020.9050026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emotions, formed in the process of perceiving external environment, directly affect human daily life, such as social interaction, work efficiency, physical wellness, and mental health. In recent decades, emotion recognition has become a promising research direction with significant application values. Taking the advantages of electroencephalogram (EEG) signals (i.e., high time resolution) and video‐based external emotion evoking (i.e., rich media information), video‐triggered emotion recognition with EEG signals has been proven as a useful tool to conduct emotion‐related studies in a laboratory environment, which provides constructive technical supports for establishing real‐time emotion interaction systems. In this paper, we will focus on video‐triggered EEG‐based emotion recognition and present a systematical introduction of the current available video‐triggered EEG‐based emotion databases with the corresponding analysis methods. First, current video‐triggered EEG databases for emotion recognition (e.g., DEAP, MAHNOB‐HCI, SEED series databases) will be presented with full details. Then, the commonly used EEG feature extraction, feature selection, and modeling methods in video‐triggered EEG‐based emotion recognition will be systematically summarized and a brief review of current situation about video‐triggered EEG‐based emotion studies will be provided. Finally, the limitations and possible prospects of the existing video‐triggered EEG‐emotion databases will be fully discussed.\",\"PeriodicalId\":67062,\"journal\":{\"name\":\"Brain Science Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Science Advances\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.26599/BSA.2020.9050026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Science Advances","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.26599/BSA.2020.9050026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

情绪是人们在感知外部环境的过程中形成的,它直接影响着人们的社会交往、工作效率、身体健康和心理健康等日常生活。近几十年来,情绪识别已成为一个具有重要应用价值的研究方向。利用脑电图(EEG)信号(即高时间分辨率)和基于视频的外部情绪唤起(即富媒体信息)的优势,利用脑电图信号进行视频触发的情绪识别已被证明是在实验室环境下进行情绪相关研究的有用工具,为建立实时情绪交互系统提供了建设性的技术支持。在本文中,我们将重点关注基于视频触发脑电图的情感识别,并系统地介绍当前可用的基于视频触发脑电图的情感数据库及其相应的分析方法。首先,将详细介绍当前用于情绪识别的视频触发脑电图数据库(例如,DEAP, MAHNOB - HCI, SEED系列数据库)。然后,系统总结了基于视频触发的EEG情感识别中常用的EEG特征提取、特征选择和建模方法,并简要回顾了基于视频触发的EEG情感研究的现状。最后,将充分讨论现有视频触发脑电图情绪数据库的局限性和可能的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Video‐triggered EEG‐emotion public databases and current methods: A survey
Emotions, formed in the process of perceiving external environment, directly affect human daily life, such as social interaction, work efficiency, physical wellness, and mental health. In recent decades, emotion recognition has become a promising research direction with significant application values. Taking the advantages of electroencephalogram (EEG) signals (i.e., high time resolution) and video‐based external emotion evoking (i.e., rich media information), video‐triggered emotion recognition with EEG signals has been proven as a useful tool to conduct emotion‐related studies in a laboratory environment, which provides constructive technical supports for establishing real‐time emotion interaction systems. In this paper, we will focus on video‐triggered EEG‐based emotion recognition and present a systematical introduction of the current available video‐triggered EEG‐based emotion databases with the corresponding analysis methods. First, current video‐triggered EEG databases for emotion recognition (e.g., DEAP, MAHNOB‐HCI, SEED series databases) will be presented with full details. Then, the commonly used EEG feature extraction, feature selection, and modeling methods in video‐triggered EEG‐based emotion recognition will be systematically summarized and a brief review of current situation about video‐triggered EEG‐based emotion studies will be provided. Finally, the limitations and possible prospects of the existing video‐triggered EEG‐emotion databases will be fully discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
27
审稿时长
10 weeks
期刊最新文献
A review of deep learning methods for cross-subject rapid serial visual presentation detection in World Robot Contest 2022 Overview of recognition methods for SSVEP-based BCIs in World Robot Contest 2022: MATLAB undergraduate group Algorithm contest of motor imagery BCI in the World Robot Contest 2022: A survey Winning algorithms in BCI Controlled Robot Contest in World Robot Contest 2022: BCI Turing Test Overview of the winning approaches in 2022 World Robot Contest Championship–Asynchronous SSVEP
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1