日冕环:受限等离子体的观测和建模

IF 23 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Living Reviews in Solar Physics Pub Date : 2010-11-08 DOI:10.12942/lrsp-2010-5
Fabio Reale
{"title":"日冕环:受限等离子体的观测和建模","authors":"Fabio Reale","doi":"10.12942/lrsp-2010-5","DOIUrl":null,"url":null,"abstract":"<p>Coronal loops are the building blocks of the X-ray bright solar corona. They owe their brightness to the dense confined plasma, and this review focuses on loops mostly as structures confining plasma. After a brief historical overview, the review is divided into two separate but not independent parts: the first illustrates the observational framework, the second reviews the theoretical knowledge. Quiescent loops and their confined plasma are considered, and therefore topics such as loop oscillations and flaring loops (except for non-solar ones which provide information on stellar loops) are not specifically addressed here. The observational section discusses loop classification and populations, and then describes the morphology of coronal loops, its relationship with the magnetic field, and the concept of loops as multi-stranded structures. The following part of this section is devoted to the characteristics of the loop plasma and of its thermal structure in particular, according to the classification into hot, warm, and cool loops. Then, temporal analyses of loops and the observations of plasma dynamics and flows are illustrated. In the modeling section some basics of loop physics are provided, supplying some fundamental scaling laws and timescales, a useful tool for consultation. The concept of loop modeling is introduced and models are distinguished between those treating loops as monolithic and static, and those resolving loops into thin and dynamic strands. Then, more specific discussions address modeling the loop fine structure and the plasma flowing along the loops. Special attention is devoted to the question of loop heating, with separate discussion of wave (AC) and impulsive (DC) heating. Finally, a brief discussion about stellar X-ray emitting structures related to coronal loops is included and followed by conclusions and open questions.</p>","PeriodicalId":687,"journal":{"name":"Living Reviews in Solar Physics","volume":"7 1","pages":""},"PeriodicalIF":23.0000,"publicationDate":"2010-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.12942/lrsp-2010-5","citationCount":"127","resultStr":"{\"title\":\"Coronal Loops: Observations and Modeling of Confined Plasma\",\"authors\":\"Fabio Reale\",\"doi\":\"10.12942/lrsp-2010-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Coronal loops are the building blocks of the X-ray bright solar corona. They owe their brightness to the dense confined plasma, and this review focuses on loops mostly as structures confining plasma. After a brief historical overview, the review is divided into two separate but not independent parts: the first illustrates the observational framework, the second reviews the theoretical knowledge. Quiescent loops and their confined plasma are considered, and therefore topics such as loop oscillations and flaring loops (except for non-solar ones which provide information on stellar loops) are not specifically addressed here. The observational section discusses loop classification and populations, and then describes the morphology of coronal loops, its relationship with the magnetic field, and the concept of loops as multi-stranded structures. The following part of this section is devoted to the characteristics of the loop plasma and of its thermal structure in particular, according to the classification into hot, warm, and cool loops. Then, temporal analyses of loops and the observations of plasma dynamics and flows are illustrated. In the modeling section some basics of loop physics are provided, supplying some fundamental scaling laws and timescales, a useful tool for consultation. The concept of loop modeling is introduced and models are distinguished between those treating loops as monolithic and static, and those resolving loops into thin and dynamic strands. Then, more specific discussions address modeling the loop fine structure and the plasma flowing along the loops. Special attention is devoted to the question of loop heating, with separate discussion of wave (AC) and impulsive (DC) heating. Finally, a brief discussion about stellar X-ray emitting structures related to coronal loops is included and followed by conclusions and open questions.</p>\",\"PeriodicalId\":687,\"journal\":{\"name\":\"Living Reviews in Solar Physics\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":23.0000,\"publicationDate\":\"2010-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.12942/lrsp-2010-5\",\"citationCount\":\"127\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Living Reviews in Solar Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.12942/lrsp-2010-5\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Living Reviews in Solar Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.12942/lrsp-2010-5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 127

摘要

日冕环是x射线明亮日冕的组成部分。它们的亮度归功于密集的受限等离子体,本文主要关注环作为约束等离子体的结构。在简要的历史概述之后,本文分为两个独立但不独立的部分:第一部分阐述了观察框架,第二部分回顾了理论知识。考虑了静态环和它们的受限等离子体,因此,诸如环振荡和耀斑环(提供恒星环信息的非太阳环除外)等主题在这里没有特别讨论。观测部分讨论了环路的分类和数量,然后描述了日冕环路的形态,它与磁场的关系,以及环路作为多链结构的概念。本节的以下部分将根据热回路、暖回路和冷回路的分类,专门讨论回路等离子体的特性,特别是其热结构。然后,介绍了环的时间分析以及等离子体动力学和流动的观测。在建模部分提供了环路物理的一些基础知识,提供了一些基本的缩放定律和时间尺度,这是一个有用的咨询工具。引入了循环建模的概念,并区分了将循环作为整体和静态处理的模型和将循环分解为细链和动态链的模型。然后,更具体地讨论了环精细结构的建模和沿环流动的等离子体。特别注意回路加热的问题,分别讨论了波加热(交流)和脉冲加热(直流)。最后,简要讨论了与日冕环有关的恒星x射线发射结构,并给出了结论和开放性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Coronal Loops: Observations and Modeling of Confined Plasma

Coronal loops are the building blocks of the X-ray bright solar corona. They owe their brightness to the dense confined plasma, and this review focuses on loops mostly as structures confining plasma. After a brief historical overview, the review is divided into two separate but not independent parts: the first illustrates the observational framework, the second reviews the theoretical knowledge. Quiescent loops and their confined plasma are considered, and therefore topics such as loop oscillations and flaring loops (except for non-solar ones which provide information on stellar loops) are not specifically addressed here. The observational section discusses loop classification and populations, and then describes the morphology of coronal loops, its relationship with the magnetic field, and the concept of loops as multi-stranded structures. The following part of this section is devoted to the characteristics of the loop plasma and of its thermal structure in particular, according to the classification into hot, warm, and cool loops. Then, temporal analyses of loops and the observations of plasma dynamics and flows are illustrated. In the modeling section some basics of loop physics are provided, supplying some fundamental scaling laws and timescales, a useful tool for consultation. The concept of loop modeling is introduced and models are distinguished between those treating loops as monolithic and static, and those resolving loops into thin and dynamic strands. Then, more specific discussions address modeling the loop fine structure and the plasma flowing along the loops. Special attention is devoted to the question of loop heating, with separate discussion of wave (AC) and impulsive (DC) heating. Finally, a brief discussion about stellar X-ray emitting structures related to coronal loops is included and followed by conclusions and open questions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Living Reviews in Solar Physics
Living Reviews in Solar Physics Earth and Planetary Sciences-Space and Planetary Science
CiteScore
41.90
自引率
1.40%
发文量
3
审稿时长
20 weeks
期刊介绍: Living Reviews in Solar Physics is a peer-reviewed, full open access, and exclusively online journal, publishing freely available reviews of research in all areas of solar and heliospheric physics. Articles are solicited from leading authorities and are directed towards the scientific community at or above the graduate-student level. The articles in Living Reviews provide critical reviews of the current state of research in the fields they cover. They evaluate existing work, place it in a meaningful context, and suggest areas where more work and new results are needed. Articles also offer annotated insights into the key literature and describe other available resources. Living Reviews is unique in maintaining a suite of high-quality reviews, which are kept up-to-date by the authors. This is the meaning of the word "living" in the journal''s title.
期刊最新文献
Stellar flares Machine learning in solar physics Models for the long-term variations of solar activity A history of solar activity over millennia Waves in the lower solar atmosphere: the dawn of next-generation solar telescopes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1