用石灰和氧化石墨烯稳定铝土矿渣作为道路土工材料的评价

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2022-12-01 DOI:10.28927/sr.2023.003722
A. Jatoliya, Subhojit Saha, Bheem Pratap, Somenath Mondal, B. Rao
{"title":"用石灰和氧化石墨烯稳定铝土矿渣作为道路土工材料的评价","authors":"A. Jatoliya, Subhojit Saha, Bheem Pratap, Somenath Mondal, B. Rao","doi":"10.28927/sr.2023.003722","DOIUrl":null,"url":null,"abstract":"Negative traits of bauxite residue (BR) include low shear strength, inconsistent compaction characteristics and dispersion, render it unsuited geomaterial for engineering applications. The present study aims at stabilizing BR with the combination of lime (L) and graphene oxide (GO) in suitable proportions and investigating their impact on improvement in engineering properties (viz., density, unconfined compressive strength (UCS), dispersion, and durability). Lime of 2-10% and GO of 0.05-0.1% dosages (% weight of BR) are selected for experimentation purpose. Results demonstrate that L and GO together, not the individual additive, is effective to stabilize BR. A substantial improvement in UCS from 710 kPa of raw BR to 3890 kPa after treating with 10% L and 0.1% GO with 60 days curing period has been observed. 6% L and 0.05% GO for strength only in the short-term, and 10% L and 0.05% GO in durability aspect in the long-term are found as optimum dosages. Drastic decline in turbidity from 453 to 83 NTU establishes that L (6%) and GO (0.05%) addition completely alleviates dispersion behavior in BR. Though GO addition is trivial, its effect on strength and durability enhancement of BR is significant. Cementitious gel formations and bonding mechanism leading to particle aggregations are evidenced as the reason behind the improvement in strength and durability of BR. To verify the applicability of amended BR, the obtained findings are compared vis-à-vis with standards, which illustrated that the amended BR could be an excellent resource material in road construction, especially in base or sub-base courses.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Assessment of bauxite residue stabilized with lime and graphene oxide as a geomaterial for road applications\",\"authors\":\"A. Jatoliya, Subhojit Saha, Bheem Pratap, Somenath Mondal, B. Rao\",\"doi\":\"10.28927/sr.2023.003722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Negative traits of bauxite residue (BR) include low shear strength, inconsistent compaction characteristics and dispersion, render it unsuited geomaterial for engineering applications. The present study aims at stabilizing BR with the combination of lime (L) and graphene oxide (GO) in suitable proportions and investigating their impact on improvement in engineering properties (viz., density, unconfined compressive strength (UCS), dispersion, and durability). Lime of 2-10% and GO of 0.05-0.1% dosages (% weight of BR) are selected for experimentation purpose. Results demonstrate that L and GO together, not the individual additive, is effective to stabilize BR. A substantial improvement in UCS from 710 kPa of raw BR to 3890 kPa after treating with 10% L and 0.1% GO with 60 days curing period has been observed. 6% L and 0.05% GO for strength only in the short-term, and 10% L and 0.05% GO in durability aspect in the long-term are found as optimum dosages. Drastic decline in turbidity from 453 to 83 NTU establishes that L (6%) and GO (0.05%) addition completely alleviates dispersion behavior in BR. Though GO addition is trivial, its effect on strength and durability enhancement of BR is significant. Cementitious gel formations and bonding mechanism leading to particle aggregations are evidenced as the reason behind the improvement in strength and durability of BR. To verify the applicability of amended BR, the obtained findings are compared vis-à-vis with standards, which illustrated that the amended BR could be an excellent resource material in road construction, especially in base or sub-base courses.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28927/sr.2023.003722\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28927/sr.2023.003722","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 16

摘要

铝土矿废渣(BR)具有剪切强度低、压实特性和分散性不一致等缺点,不适合工程应用。本研究旨在用合适比例的石灰(L)和氧化石墨烯(GO)组合稳定BR,并研究它们对改善工程性能(即密度、无侧限抗压强度(UCS)、分散性和耐久性)的影响。选择2-10%的石灰和0.05-0.1%剂量(BR重量%)的GO用于实验目的。结果表明,L和GO一起(而不是单独的添加剂)可以有效地稳定BR。在用10%L和0.1%GO处理60天的固化期后,观察到UCS从原料BR的710kPa显著提高到3890kPa。6%L和0.05%GO在短期内仅用于强度,而10%L和0.05%GO在长期内用于耐久性方面被发现是最佳剂量。浊度从453 NTU急剧下降到83NTU,表明L(6%)和GO(0.05%)的添加完全缓解了BR的分散行为。尽管GO的添加量很小,但其对BR强度和耐久性的增强作用是显著的。胶结凝胶的形成和导致颗粒聚集的结合机制被证明是BR强度和耐久性提高的原因。为了验证修正BR的适用性,将所得结果与标准进行了比较,表明修正BR可能是道路建设中的优秀资源材料,尤其是在基层或底基层中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessment of bauxite residue stabilized with lime and graphene oxide as a geomaterial for road applications
Negative traits of bauxite residue (BR) include low shear strength, inconsistent compaction characteristics and dispersion, render it unsuited geomaterial for engineering applications. The present study aims at stabilizing BR with the combination of lime (L) and graphene oxide (GO) in suitable proportions and investigating their impact on improvement in engineering properties (viz., density, unconfined compressive strength (UCS), dispersion, and durability). Lime of 2-10% and GO of 0.05-0.1% dosages (% weight of BR) are selected for experimentation purpose. Results demonstrate that L and GO together, not the individual additive, is effective to stabilize BR. A substantial improvement in UCS from 710 kPa of raw BR to 3890 kPa after treating with 10% L and 0.1% GO with 60 days curing period has been observed. 6% L and 0.05% GO for strength only in the short-term, and 10% L and 0.05% GO in durability aspect in the long-term are found as optimum dosages. Drastic decline in turbidity from 453 to 83 NTU establishes that L (6%) and GO (0.05%) addition completely alleviates dispersion behavior in BR. Though GO addition is trivial, its effect on strength and durability enhancement of BR is significant. Cementitious gel formations and bonding mechanism leading to particle aggregations are evidenced as the reason behind the improvement in strength and durability of BR. To verify the applicability of amended BR, the obtained findings are compared vis-à-vis with standards, which illustrated that the amended BR could be an excellent resource material in road construction, especially in base or sub-base courses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
The change process questionnaire (CPQ): A psychometric validation. Differential Costs of Raising Grandchildren on Older Mother-Adult Child Relations in Black and White Families. Does Resilience Mediate the Relationship Between Negative Self-Image and Psychological Distress in Middle-Aged and Older Gay and Bisexual Men? Intergenerational Relations and Well-being Among Older Middle Eastern/Arab American Immigrants During the COVID-19 Pandemic. Caregiving Appraisals and Emotional Valence: Moderating Effects of Activity Participation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1