M. Sincik, A. Goksoy, Emre Senyigit, Y. Ulusoy, M. Acar, Sahin Gizlenci, Gulhan Atagun, Sami Suzer
{"title":"油菜基因型对不同环境的响应及产量稳定性研究","authors":"M. Sincik, A. Goksoy, Emre Senyigit, Y. Ulusoy, M. Acar, Sahin Gizlenci, Gulhan Atagun, Sami Suzer","doi":"10.51372/bioagro332.4","DOIUrl":null,"url":null,"abstract":"he GxE interaction (GEI) provides essential information for selecting and recommending cultivars in multi-environment trials. This study aimed to evaluate genotype (G) and environment (E) main effects and GxE interaction of 15 canola genotypes (10 canola lines and 5 check varieties) over 8 environments and to examine the existence of different mega environments. Canola yield performances were evaluated during 2015/16 and 2016/17 production season in three different locations (Southern Marmara, Thrace side of Marmara, and Black Sea regions) of Turkey. The trial in each location was arranged in a randomized complete block design with four replications. The seed yield data were analyzed using GGE biplot and the yield components data were analyzed using ANOVA. The agronomical traits revealed that environments, genotypes, and GEI were significant at 1 % probability for all of the characters. The variance analysis exhibited that genotypes, environments, and GEI explained 21.6, 21.7, and 25.7 % of the total sum of squares for seed yield, respectively. The GGE biplot analysis showed that the first and second principal components explained 57.3 and 18.3 % of the total variation in the data matrix, respectively. GGE biplot analysis showed that the polygon view of a biplot is an excellent way to visualize the interactions between genotypes and environments.","PeriodicalId":55985,"journal":{"name":"Bioagro","volume":"33 1","pages":"105-114"},"PeriodicalIF":0.6000,"publicationDate":"2021-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Response and yield stability of canola (Brassica napus L.) genotypes to multi-environments using GGE biplot analysis\",\"authors\":\"M. Sincik, A. Goksoy, Emre Senyigit, Y. Ulusoy, M. Acar, Sahin Gizlenci, Gulhan Atagun, Sami Suzer\",\"doi\":\"10.51372/bioagro332.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"he GxE interaction (GEI) provides essential information for selecting and recommending cultivars in multi-environment trials. This study aimed to evaluate genotype (G) and environment (E) main effects and GxE interaction of 15 canola genotypes (10 canola lines and 5 check varieties) over 8 environments and to examine the existence of different mega environments. Canola yield performances were evaluated during 2015/16 and 2016/17 production season in three different locations (Southern Marmara, Thrace side of Marmara, and Black Sea regions) of Turkey. The trial in each location was arranged in a randomized complete block design with four replications. The seed yield data were analyzed using GGE biplot and the yield components data were analyzed using ANOVA. The agronomical traits revealed that environments, genotypes, and GEI were significant at 1 % probability for all of the characters. The variance analysis exhibited that genotypes, environments, and GEI explained 21.6, 21.7, and 25.7 % of the total sum of squares for seed yield, respectively. The GGE biplot analysis showed that the first and second principal components explained 57.3 and 18.3 % of the total variation in the data matrix, respectively. GGE biplot analysis showed that the polygon view of a biplot is an excellent way to visualize the interactions between genotypes and environments.\",\"PeriodicalId\":55985,\"journal\":{\"name\":\"Bioagro\",\"volume\":\"33 1\",\"pages\":\"105-114\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioagro\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.51372/bioagro332.4\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioagro","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.51372/bioagro332.4","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AGRONOMY","Score":null,"Total":0}
Response and yield stability of canola (Brassica napus L.) genotypes to multi-environments using GGE biplot analysis
he GxE interaction (GEI) provides essential information for selecting and recommending cultivars in multi-environment trials. This study aimed to evaluate genotype (G) and environment (E) main effects and GxE interaction of 15 canola genotypes (10 canola lines and 5 check varieties) over 8 environments and to examine the existence of different mega environments. Canola yield performances were evaluated during 2015/16 and 2016/17 production season in three different locations (Southern Marmara, Thrace side of Marmara, and Black Sea regions) of Turkey. The trial in each location was arranged in a randomized complete block design with four replications. The seed yield data were analyzed using GGE biplot and the yield components data were analyzed using ANOVA. The agronomical traits revealed that environments, genotypes, and GEI were significant at 1 % probability for all of the characters. The variance analysis exhibited that genotypes, environments, and GEI explained 21.6, 21.7, and 25.7 % of the total sum of squares for seed yield, respectively. The GGE biplot analysis showed that the first and second principal components explained 57.3 and 18.3 % of the total variation in the data matrix, respectively. GGE biplot analysis showed that the polygon view of a biplot is an excellent way to visualize the interactions between genotypes and environments.
BioagroAgricultural and Biological Sciences-General Agricultural and Biological Sciences
CiteScore
1.40
自引率
37.50%
发文量
22
期刊介绍:
Bioagro es una revista científica del Decanato de Agronomía de la Universidad Centroccidental “Lisandro Alvarado” (UCLA). Su periodicidad es cuatrimestral y se publica en los meses de enero, mayo y septiembre. Cada trabajo es revisado por al menos dos especialistas en el área, externos a la revista, de cuya opinión depende la aceptación definitiva. Se utiliza sistema de arbitraje doble ciego.
La revista va dirigida, fundamental pero no exclusivamente, a profesionales y técnicos del área agrícola. Su objetivo es publicar trabajos científicos originales e inéditos en ciencias agrícolas que enfoquen aspectos de agronomía, botánica y propagación de plantas, entomología y zoología, suelos, fitopatología y protección vegetal, ingeniería agrícola, genética y mejoramiento de plantas, ecología, procesamiento de productos agrícolas, biotecnología y sociales. También pueden ser publicados artículos cortos en los que se presenten descubrimientos científicos, desarrollos tecnológicos y resultados de diagnósticos integrales, en la modalidad de Notas Técnicas.
En Venezuela, se encuentra en las bibliotecas de todas las universidades e institutos de educación superior que ofrecen carreras agronómicas, así como de los entes oficiales de investigación agropecuaria. En el exterior, la revista llega a universidades y/o institutos de investigación agrícolas de todos los países de América Latina así como Estados Unidos, Canadá y España.