Weiying Shang, Weiwei Zhang, Hai Zhang, Hongmei Zhang, Jinde Cao, F. Alsaadi
{"title":"具有参数不确定性的延迟分数阶四元数值神经网络的有限时滞投影同步","authors":"Weiying Shang, Weiwei Zhang, Hai Zhang, Hongmei Zhang, Jinde Cao, F. Alsaadi","doi":"10.15388/namc.2023.28.30817","DOIUrl":null,"url":null,"abstract":"This paper discusses a class issue of finite-time lag projective synchronization (FTLPS) of delayed fractional-order quaternion-valued neural networks (FOQVNNs) with parameter uncertainties, which is solved by a non-decomposition method. Firstly, a new delayed FOQVNNs model with uncertain parameters is designed. Secondly, two types of feedback controller and adaptive controller without sign functions are designed in the quaternion domain. Based on the Lyapunov analysis method, the non-decomposition method is applied to replace the decomposition method that requires complex calculations, combined with some quaternion inequality techniques, to accurately estimate the settling time of FTLPS. Finally, the correctness of the obtained theoretical results is testified by a numerical simulation example.","PeriodicalId":49286,"journal":{"name":"Nonlinear Analysis-Modelling and Control","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Finite-time lag projective synchronization of delayed fractional-order quaternion-valued neural networks with parameter uncertainties\",\"authors\":\"Weiying Shang, Weiwei Zhang, Hai Zhang, Hongmei Zhang, Jinde Cao, F. Alsaadi\",\"doi\":\"10.15388/namc.2023.28.30817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses a class issue of finite-time lag projective synchronization (FTLPS) of delayed fractional-order quaternion-valued neural networks (FOQVNNs) with parameter uncertainties, which is solved by a non-decomposition method. Firstly, a new delayed FOQVNNs model with uncertain parameters is designed. Secondly, two types of feedback controller and adaptive controller without sign functions are designed in the quaternion domain. Based on the Lyapunov analysis method, the non-decomposition method is applied to replace the decomposition method that requires complex calculations, combined with some quaternion inequality techniques, to accurately estimate the settling time of FTLPS. Finally, the correctness of the obtained theoretical results is testified by a numerical simulation example.\",\"PeriodicalId\":49286,\"journal\":{\"name\":\"Nonlinear Analysis-Modelling and Control\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Modelling and Control\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.15388/namc.2023.28.30817\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Modelling and Control","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15388/namc.2023.28.30817","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Finite-time lag projective synchronization of delayed fractional-order quaternion-valued neural networks with parameter uncertainties
This paper discusses a class issue of finite-time lag projective synchronization (FTLPS) of delayed fractional-order quaternion-valued neural networks (FOQVNNs) with parameter uncertainties, which is solved by a non-decomposition method. Firstly, a new delayed FOQVNNs model with uncertain parameters is designed. Secondly, two types of feedback controller and adaptive controller without sign functions are designed in the quaternion domain. Based on the Lyapunov analysis method, the non-decomposition method is applied to replace the decomposition method that requires complex calculations, combined with some quaternion inequality techniques, to accurately estimate the settling time of FTLPS. Finally, the correctness of the obtained theoretical results is testified by a numerical simulation example.
期刊介绍:
The scope of the journal is to provide a multidisciplinary forum for scientists, researchers and engineers involved in research and design of nonlinear processes and phenomena, including the nonlinear modelling of phenomena of the nature. The journal accepts contributions on nonlinear phenomena and processes in any field of science and technology.
The aims of the journal are: to provide a presentation of theoretical results and applications; to cover research results of multidisciplinary interest; to provide fast publishing of quality papers by extensive work of editors and referees; to provide an early access to the information by presenting the complete papers on Internet.