{"title":"过渡相关性将基于机器学习的检测置于对话交互中","authors":"S. Ondáš, Matus Pleva, Silvia Bacikova","doi":"10.5755/j02.eie.33853","DOIUrl":null,"url":null,"abstract":"A transition-relevance place (TRP) represents a place in a conversation where a change of speaker can occur. The appearance and use of these points in the dialogue ensures a correct and smooth alternation between the speakers. In the presented article, we focused on the study of prosodic speech parameters in the Slovak language, and we tried to experimentally verify the potential of these parameters to detect TRP. To study turn-taking issues in dyadic conversations, the Slovak dialogue corpus was collected and annotated. TRP places were identified by the human annotator in the manual labelling process. The data were then divided into chunks that reflect the length of the interpausal dialogue units and the prosodic features were computed. In the Matlab environment, we compared different types of classifiers based on machine learning in the role of an automatic TRP detector based on pitch and intensity parameters. The achieved results indicate that prosodic parameters can be useful in detecting TRP after splitting the dialogue into interpausal units. The designed approach can serve as a tool for automatic conversational analysis or can be used to label large databases for training predictive models, which can help machines to enhance human-machine spoken dialogue applications.","PeriodicalId":51031,"journal":{"name":"Elektronika Ir Elektrotechnika","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transition-Relevance Places Machine Learning-Based Detection in Dialogue Interactions\",\"authors\":\"S. Ondáš, Matus Pleva, Silvia Bacikova\",\"doi\":\"10.5755/j02.eie.33853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A transition-relevance place (TRP) represents a place in a conversation where a change of speaker can occur. The appearance and use of these points in the dialogue ensures a correct and smooth alternation between the speakers. In the presented article, we focused on the study of prosodic speech parameters in the Slovak language, and we tried to experimentally verify the potential of these parameters to detect TRP. To study turn-taking issues in dyadic conversations, the Slovak dialogue corpus was collected and annotated. TRP places were identified by the human annotator in the manual labelling process. The data were then divided into chunks that reflect the length of the interpausal dialogue units and the prosodic features were computed. In the Matlab environment, we compared different types of classifiers based on machine learning in the role of an automatic TRP detector based on pitch and intensity parameters. The achieved results indicate that prosodic parameters can be useful in detecting TRP after splitting the dialogue into interpausal units. The designed approach can serve as a tool for automatic conversational analysis or can be used to label large databases for training predictive models, which can help machines to enhance human-machine spoken dialogue applications.\",\"PeriodicalId\":51031,\"journal\":{\"name\":\"Elektronika Ir Elektrotechnika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Elektronika Ir Elektrotechnika\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5755/j02.eie.33853\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elektronika Ir Elektrotechnika","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5755/j02.eie.33853","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Transition-Relevance Places Machine Learning-Based Detection in Dialogue Interactions
A transition-relevance place (TRP) represents a place in a conversation where a change of speaker can occur. The appearance and use of these points in the dialogue ensures a correct and smooth alternation between the speakers. In the presented article, we focused on the study of prosodic speech parameters in the Slovak language, and we tried to experimentally verify the potential of these parameters to detect TRP. To study turn-taking issues in dyadic conversations, the Slovak dialogue corpus was collected and annotated. TRP places were identified by the human annotator in the manual labelling process. The data were then divided into chunks that reflect the length of the interpausal dialogue units and the prosodic features were computed. In the Matlab environment, we compared different types of classifiers based on machine learning in the role of an automatic TRP detector based on pitch and intensity parameters. The achieved results indicate that prosodic parameters can be useful in detecting TRP after splitting the dialogue into interpausal units. The designed approach can serve as a tool for automatic conversational analysis or can be used to label large databases for training predictive models, which can help machines to enhance human-machine spoken dialogue applications.
期刊介绍:
The journal aims to attract original research papers on featuring practical developments in the field of electronics and electrical engineering. The journal seeks to publish research progress in the field of electronics and electrical engineering with an emphasis on the applied rather than the theoretical in as much detail as possible.
The journal publishes regular papers dealing with the following areas, but not limited to:
Electronics;
Electronic Measurements;
Signal Technology;
Microelectronics;
High Frequency Technology, Microwaves.
Electrical Engineering;
Renewable Energy;
Automation, Robotics;
Telecommunications Engineering.