通过使用混合CNN深度学习模型提高深度伪造视频检测的性能

IF 0.8 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Electrical and Computer Engineering Systems Pub Date : 2023-02-27 DOI:10.32985/ijeces.14.2.6
Sumaiya Thaseen Ikram, P. V, Shourya Chambial, D. Sood, Arulkumar V
{"title":"通过使用混合CNN深度学习模型提高深度伪造视频检测的性能","authors":"Sumaiya Thaseen Ikram, P. V, Shourya Chambial, D. Sood, Arulkumar V","doi":"10.32985/ijeces.14.2.6","DOIUrl":null,"url":null,"abstract":"In the current era, many fake videos and images are created with the help of various software and new AI (Artificial Intelligence) technologies, which leave a few hints of manipulation. There are many unethical ways videos can be used to threaten, fight, or create panic among people. It is important to ensure that such methods are not used to create fake videos. An AI-based technique for the synthesis of human images is called Deep Fake. They are created by combining and superimposing existing videos onto the source videos. In this paper, a system is developed that uses a hybrid Convolutional Neural Network (CNN) consisting of InceptionResnet v2 and Xception to extract frame-level features. Experimental analysis is performed using the DFDC deep fake detection challenge on Kaggle. These deep learning-based methods are optimized to increase accuracy and decrease training time by using this dataset for training and testing. We achieved a precision of 0.985, a recall of 0.96, an f1-score of 0.98, and support of 0.968.","PeriodicalId":41912,"journal":{"name":"International Journal of Electrical and Computer Engineering Systems","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Performance Enhancement of Deepfake Video Detection through the use of a Hybrid CNN Deep Learning Model\",\"authors\":\"Sumaiya Thaseen Ikram, P. V, Shourya Chambial, D. Sood, Arulkumar V\",\"doi\":\"10.32985/ijeces.14.2.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the current era, many fake videos and images are created with the help of various software and new AI (Artificial Intelligence) technologies, which leave a few hints of manipulation. There are many unethical ways videos can be used to threaten, fight, or create panic among people. It is important to ensure that such methods are not used to create fake videos. An AI-based technique for the synthesis of human images is called Deep Fake. They are created by combining and superimposing existing videos onto the source videos. In this paper, a system is developed that uses a hybrid Convolutional Neural Network (CNN) consisting of InceptionResnet v2 and Xception to extract frame-level features. Experimental analysis is performed using the DFDC deep fake detection challenge on Kaggle. These deep learning-based methods are optimized to increase accuracy and decrease training time by using this dataset for training and testing. We achieved a precision of 0.985, a recall of 0.96, an f1-score of 0.98, and support of 0.968.\",\"PeriodicalId\":41912,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32985/ijeces.14.2.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32985/ijeces.14.2.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 4

摘要

在当前时代,许多虚假视频和图像都是在各种软件和新的人工智能技术的帮助下创建的,这些技术留下了一些操纵的痕迹。视频有很多不道德的方式可以用来威胁、打架或在人们中制造恐慌。重要的是要确保这些方法不会被用来制作虚假视频。一种基于人工智能的人类图像合成技术被称为深度伪造。它们是通过将现有视频组合并叠加到源视频上来创建的。在本文中,开发了一个系统,该系统使用由InceptionResnet v2和Xception组成的混合卷积神经网络(CNN)来提取帧级特征。在Kaggle上使用DFDC深度伪检测挑战进行实验分析。通过使用该数据集进行训练和测试,这些基于深度学习的方法得到了优化,以提高准确性并减少训练时间。我们获得了0.985的精度、0.96的召回率、0.98的f1分数和0.968的支持率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Performance Enhancement of Deepfake Video Detection through the use of a Hybrid CNN Deep Learning Model
In the current era, many fake videos and images are created with the help of various software and new AI (Artificial Intelligence) technologies, which leave a few hints of manipulation. There are many unethical ways videos can be used to threaten, fight, or create panic among people. It is important to ensure that such methods are not used to create fake videos. An AI-based technique for the synthesis of human images is called Deep Fake. They are created by combining and superimposing existing videos onto the source videos. In this paper, a system is developed that uses a hybrid Convolutional Neural Network (CNN) consisting of InceptionResnet v2 and Xception to extract frame-level features. Experimental analysis is performed using the DFDC deep fake detection challenge on Kaggle. These deep learning-based methods are optimized to increase accuracy and decrease training time by using this dataset for training and testing. We achieved a precision of 0.985, a recall of 0.96, an f1-score of 0.98, and support of 0.968.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
11.80%
发文量
69
期刊介绍: The International Journal of Electrical and Computer Engineering Systems publishes original research in the form of full papers, case studies, reviews and surveys. It covers theory and application of electrical and computer engineering, synergy of computer systems and computational methods with electrical and electronic systems, as well as interdisciplinary research. Power systems Renewable electricity production Power electronics Electrical drives Industrial electronics Communication systems Advanced modulation techniques RFID devices and systems Signal and data processing Image processing Multimedia systems Microelectronics Instrumentation and measurement Control systems Robotics Modeling and simulation Modern computer architectures Computer networks Embedded systems High-performance computing Engineering education Parallel and distributed computer systems Human-computer systems Intelligent systems Multi-agent and holonic systems Real-time systems Software engineering Internet and web applications and systems Applications of computer systems in engineering and related disciplines Mathematical models of engineering systems Engineering management.
期刊最新文献
A Four Slot Dual Feed and Dual Band Reconfigurable Antenna for Fixed Satellite Service Applications Improving Scientific Literature Classification: A Parameter-Efficient Transformer-Based Approach The New ADE-TLM Algorithm for Modeling Debye Medium Multi-Head CNN-based Software Development Risk Classification FOE NET: Segmentation of Fetal in Ultrasound Images Using V-NET
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1