非模型细菌底盘结构研究进展

IF 3.4 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Current Opinion in Systems Biology Pub Date : 2023-08-19 DOI:10.1016/j.coisb.2023.100471
Soonkyu Hwang , Chanyoung Joung , Woori Kim , Bernhard Palsson , Byung-Kwan Cho
{"title":"非模型细菌底盘结构研究进展","authors":"Soonkyu Hwang ,&nbsp;Chanyoung Joung ,&nbsp;Woori Kim ,&nbsp;Bernhard Palsson ,&nbsp;Byung-Kwan Cho","doi":"10.1016/j.coisb.2023.100471","DOIUrl":null,"url":null,"abstract":"<div><p>The development of bacterial chassis to increase productivity and reduce industrial costs in value-added biochemical production has gained significant attention. Current efforts have focused on model bacteria, thus limiting their suitability to produce specialized products. Therefore, there is a growing emphasis on developing specialized non-model bacterial chassis to expand the repertoire of bioproducts. However, the lack of genetic information and tools for non-model bacteria remains challenging. In this review, we categorize and introduce non-model chassis based on their characteristics in relation to the target products. We also provide an overview of the trends in the development of genome-reduced chassis to enhance productivity. Furthermore, we propose synthetic biology technologies that can be applied to a broad range of non-model bacteria.</p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Recent advances in non-model bacterial chassis construction\",\"authors\":\"Soonkyu Hwang ,&nbsp;Chanyoung Joung ,&nbsp;Woori Kim ,&nbsp;Bernhard Palsson ,&nbsp;Byung-Kwan Cho\",\"doi\":\"10.1016/j.coisb.2023.100471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The development of bacterial chassis to increase productivity and reduce industrial costs in value-added biochemical production has gained significant attention. Current efforts have focused on model bacteria, thus limiting their suitability to produce specialized products. Therefore, there is a growing emphasis on developing specialized non-model bacterial chassis to expand the repertoire of bioproducts. However, the lack of genetic information and tools for non-model bacteria remains challenging. In this review, we categorize and introduce non-model chassis based on their characteristics in relation to the target products. We also provide an overview of the trends in the development of genome-reduced chassis to enhance productivity. Furthermore, we propose synthetic biology technologies that can be applied to a broad range of non-model bacteria.</p></div>\",\"PeriodicalId\":37400,\"journal\":{\"name\":\"Current Opinion in Systems Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Systems Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452310023000288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452310023000288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

在增值生化生产中,开发细菌底盘以提高生产力和降低工业成本已经引起了极大的关注。目前的工作集中在模式细菌上,从而限制了它们生产专业产品的适用性。因此,人们越来越重视开发专门的非模型细菌底盘,以扩大生物产品的种类。然而,缺乏非模式细菌的遗传信息和工具仍然具有挑战性。在这篇综述中,我们根据非模型底盘与目标产品的关系对其进行了分类和介绍。我们还概述了基因组减少底盘以提高生产力的发展趋势。此外,我们提出了可以应用于广泛的非模式细菌的合成生物学技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recent advances in non-model bacterial chassis construction

The development of bacterial chassis to increase productivity and reduce industrial costs in value-added biochemical production has gained significant attention. Current efforts have focused on model bacteria, thus limiting their suitability to produce specialized products. Therefore, there is a growing emphasis on developing specialized non-model bacterial chassis to expand the repertoire of bioproducts. However, the lack of genetic information and tools for non-model bacteria remains challenging. In this review, we categorize and introduce non-model chassis based on their characteristics in relation to the target products. We also provide an overview of the trends in the development of genome-reduced chassis to enhance productivity. Furthermore, we propose synthetic biology technologies that can be applied to a broad range of non-model bacteria.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Systems Biology
Current Opinion in Systems Biology Mathematics-Applied Mathematics
CiteScore
7.10
自引率
2.70%
发文量
20
期刊介绍: Current Opinion in Systems Biology is a new systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of Systems Biology. It publishes polished, concise and timely systematic reviews and opinion articles. In addition to describing recent trends, the authors are encouraged to give their subjective opinion on the topics discussed. As this is such a broad discipline, we have determined themed sections each of which is reviewed once a year. The following areas will be covered by Current Opinion in Systems Biology: -Genomics and Epigenomics -Gene Regulation -Metabolic Networks -Cancer and Systemic Diseases -Mathematical Modelling -Big Data Acquisition and Analysis -Systems Pharmacology and Physiology -Synthetic Biology -Stem Cells, Development, and Differentiation -Systems Biology of Mold Organisms -Systems Immunology and Host-Pathogen Interaction -Systems Ecology and Evolution
期刊最新文献
From regulation of cell fate decisions towards patient-specific treatments, insights from mechanistic models of signalling pathways Editorial overview: Systems biology of ecological interactions across scales A critical review of multiscale modeling for predictive understanding of cancer cell metabolism Network modeling approaches for metabolic diseases and diabetes Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1