{"title":"基于Unity和SteamVR的Fruchterman-Reingold虚拟现实图形可视化","authors":"G. Kortemeyer","doi":"10.1177/14738716211060306","DOIUrl":null,"url":null,"abstract":"The paper describes a method for the immersive, dynamic visualization of undirected, weighted graphs. Using the Fruchterman-Reingold method, force-directed graphs are drawn in a Virtual-Reality system. The user can walk through the data, as well as move vertices using controllers, while the network display rearranges in realtime according to Newtonian physics. In addition to the physics behind the employed method, the paper explains the most pertinent computational mechanisms for its implementation, using Unity, SteamVR, and a Virtual-Reality system such as HTC Vive (the source package is made available for download). It was found that the method allows for intuitive exploration of graphs with on the order of 10 2 vertices, and that dynamic extrusion of vertices and realtime readjustment of the network structure allows for developing an intuitive understanding of the relationship of a vertex to the remainder of the network. Based on this observation, possible future developments are suggested.","PeriodicalId":50360,"journal":{"name":"Information Visualization","volume":"21 1","pages":"143 - 152"},"PeriodicalIF":1.8000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Virtual-Reality graph visualization based on Fruchterman-Reingold using Unity and SteamVR\",\"authors\":\"G. Kortemeyer\",\"doi\":\"10.1177/14738716211060306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper describes a method for the immersive, dynamic visualization of undirected, weighted graphs. Using the Fruchterman-Reingold method, force-directed graphs are drawn in a Virtual-Reality system. The user can walk through the data, as well as move vertices using controllers, while the network display rearranges in realtime according to Newtonian physics. In addition to the physics behind the employed method, the paper explains the most pertinent computational mechanisms for its implementation, using Unity, SteamVR, and a Virtual-Reality system such as HTC Vive (the source package is made available for download). It was found that the method allows for intuitive exploration of graphs with on the order of 10 2 vertices, and that dynamic extrusion of vertices and realtime readjustment of the network structure allows for developing an intuitive understanding of the relationship of a vertex to the remainder of the network. Based on this observation, possible future developments are suggested.\",\"PeriodicalId\":50360,\"journal\":{\"name\":\"Information Visualization\",\"volume\":\"21 1\",\"pages\":\"143 - 152\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Visualization\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/14738716211060306\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Visualization","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/14738716211060306","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Virtual-Reality graph visualization based on Fruchterman-Reingold using Unity and SteamVR
The paper describes a method for the immersive, dynamic visualization of undirected, weighted graphs. Using the Fruchterman-Reingold method, force-directed graphs are drawn in a Virtual-Reality system. The user can walk through the data, as well as move vertices using controllers, while the network display rearranges in realtime according to Newtonian physics. In addition to the physics behind the employed method, the paper explains the most pertinent computational mechanisms for its implementation, using Unity, SteamVR, and a Virtual-Reality system such as HTC Vive (the source package is made available for download). It was found that the method allows for intuitive exploration of graphs with on the order of 10 2 vertices, and that dynamic extrusion of vertices and realtime readjustment of the network structure allows for developing an intuitive understanding of the relationship of a vertex to the remainder of the network. Based on this observation, possible future developments are suggested.
期刊介绍:
Information Visualization is essential reading for researchers and practitioners of information visualization and is of interest to computer scientists and data analysts working on related specialisms. This journal is an international, peer-reviewed journal publishing articles on fundamental research and applications of information visualization. The journal acts as a dedicated forum for the theories, methodologies, techniques and evaluations of information visualization and its applications.
The journal is a core vehicle for developing a generic research agenda for the field by identifying and developing the unique and significant aspects of information visualization. Emphasis is placed on interdisciplinary material and on the close connection between theory and practice.
This journal is a member of the Committee on Publication Ethics (COPE).