{"title":"高山小型有袋动物调节水分蒸发损失,表明其具有温度调节作用而非水分保护作用","authors":"P. Withers, C. Cooper, G. Körtner, F. Geiser","doi":"10.1086/719735","DOIUrl":null,"url":null,"abstract":"We show here that evaporative water loss (EWL) is constant over a wide range of ambient relative humidity for two species of small, mesic habitat dasyurid marsupials (Antechinus agilis and Antechinus swainsonii) below thermoneutrality (20°C) and within thermoneutrality (30°C). This independence of EWL from the water vapor pressure deficit between the animal and its environment indicates that EWL is physiologically controlled by both species. The magnitude of this control of EWL was similar to that of two other small marsupials from more arid habitats, which combined with the observation that there were no effects of relative humidity on body temperature or metabolic rate, suggests that control of EWL is a consequence of precise thermoregulation to maintain heat balance rather than a water-conserving strategy at low relative humidities. The antechinus appear to manipulate cutaneous EWL rather than respiratory EWL to control their total EWL by modifying their cutaneous resistance and/or skin temperature. We propose that there is a continuum between enhanced thermoregulatory EWL at high ambient temperature and so-called insensible EWL at and below thermoneutrality.","PeriodicalId":54609,"journal":{"name":"Physiological and Biochemical Zoology","volume":"95 1","pages":"212 - 228"},"PeriodicalIF":1.8000,"publicationDate":"2022-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Small Alpine Marsupials Regulate Evaporative Water Loss, Suggesting a Thermoregulatory Role Rather than a Water Conservation Role\",\"authors\":\"P. Withers, C. Cooper, G. Körtner, F. Geiser\",\"doi\":\"10.1086/719735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show here that evaporative water loss (EWL) is constant over a wide range of ambient relative humidity for two species of small, mesic habitat dasyurid marsupials (Antechinus agilis and Antechinus swainsonii) below thermoneutrality (20°C) and within thermoneutrality (30°C). This independence of EWL from the water vapor pressure deficit between the animal and its environment indicates that EWL is physiologically controlled by both species. The magnitude of this control of EWL was similar to that of two other small marsupials from more arid habitats, which combined with the observation that there were no effects of relative humidity on body temperature or metabolic rate, suggests that control of EWL is a consequence of precise thermoregulation to maintain heat balance rather than a water-conserving strategy at low relative humidities. The antechinus appear to manipulate cutaneous EWL rather than respiratory EWL to control their total EWL by modifying their cutaneous resistance and/or skin temperature. We propose that there is a continuum between enhanced thermoregulatory EWL at high ambient temperature and so-called insensible EWL at and below thermoneutrality.\",\"PeriodicalId\":54609,\"journal\":{\"name\":\"Physiological and Biochemical Zoology\",\"volume\":\"95 1\",\"pages\":\"212 - 228\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological and Biochemical Zoology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1086/719735\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological and Biochemical Zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1086/719735","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Small Alpine Marsupials Regulate Evaporative Water Loss, Suggesting a Thermoregulatory Role Rather than a Water Conservation Role
We show here that evaporative water loss (EWL) is constant over a wide range of ambient relative humidity for two species of small, mesic habitat dasyurid marsupials (Antechinus agilis and Antechinus swainsonii) below thermoneutrality (20°C) and within thermoneutrality (30°C). This independence of EWL from the water vapor pressure deficit between the animal and its environment indicates that EWL is physiologically controlled by both species. The magnitude of this control of EWL was similar to that of two other small marsupials from more arid habitats, which combined with the observation that there were no effects of relative humidity on body temperature or metabolic rate, suggests that control of EWL is a consequence of precise thermoregulation to maintain heat balance rather than a water-conserving strategy at low relative humidities. The antechinus appear to manipulate cutaneous EWL rather than respiratory EWL to control their total EWL by modifying their cutaneous resistance and/or skin temperature. We propose that there is a continuum between enhanced thermoregulatory EWL at high ambient temperature and so-called insensible EWL at and below thermoneutrality.
期刊介绍:
Physiological and Biochemical Zoology: Ecological and Evolutionary Approaches primarily publishes original research in animal physiology and biochemistry as considered from behavioral, ecological, and/or evolutionary perspectives. Studies at all levels of biological organization from the molecular to the whole organism are welcome, and work that integrates across levels of organization is particularly encouraged. Studies that focus on behavior or morphology are welcome, so long as they include ties to physiology or biochemistry, in addition to having an ecological or evolutionary context.
Subdisciplines of interest include nutrition and digestion, salt and water balance, epithelial and membrane transport, gas exchange and transport, acid-base balance, temperature adaptation, energetics, structure and function of macromolecules, chemical coordination and signal transduction, nitrogen metabolism and excretion, locomotion and muscle function, biomechanics, circulation, behavioral, comparative and mechanistic endocrinology, sensory physiology, neural coordination, and ecotoxicology ecoimmunology.