有根次图与局部生成子图

IF 0.9 3区 数学 Q2 MATHEMATICS Journal of Graph Theory Pub Date : 2023-08-16 DOI:10.1002/jgt.23012
Thomas Böhme, Jochen Harant, Matthias Kriesell, Samuel Mohr, Jens M. Schmidt
{"title":"有根次图与局部生成子图","authors":"Thomas Böhme,&nbsp;Jochen Harant,&nbsp;Matthias Kriesell,&nbsp;Samuel Mohr,&nbsp;Jens M. Schmidt","doi":"10.1002/jgt.23012","DOIUrl":null,"url":null,"abstract":"<p>Results on the existence of various types of spanning subgraphs of graphs are milestones in structural graph theory and have been diversified in several directions. In the present paper, we consider “local” versions of such statements. In 1966, for instance, D. W. Barnette proved that a 3-connected planar graph contains a spanning tree of maximum degree at most 3. A local translation of this statement is that if <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is a planar graph, <math>\n <semantics>\n <mrow>\n <mi>X</mi>\n </mrow>\n <annotation> $X$</annotation>\n </semantics></math> is a subset of specified vertices of <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> such that <math>\n <semantics>\n <mrow>\n <mi>X</mi>\n </mrow>\n <annotation> $X$</annotation>\n </semantics></math> cannot be separated in <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> by removing two or fewer vertices of <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>, then <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> has a tree of maximum degree at most 3 containing all vertices of <math>\n <semantics>\n <mrow>\n <mi>X</mi>\n </mrow>\n <annotation> $X$</annotation>\n </semantics></math>. Our results constitute a general machinery for strengthening statements about <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-connected graphs (for <math>\n <semantics>\n <mrow>\n <mn>1</mn>\n \n <mo>≤</mo>\n \n <mi>k</mi>\n \n <mo>≤</mo>\n \n <mn>4</mn>\n </mrow>\n <annotation> $1\\le k\\le 4$</annotation>\n </semantics></math>) to locally spanning versions, that is, subgraphs containing a set <math>\n <semantics>\n <mrow>\n <mi>X</mi>\n \n <mo>⊆</mo>\n \n <mi>V</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $X\\subseteq V(G)$</annotation>\n </semantics></math> of a (not necessarily planar) graph <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> in which only <math>\n <semantics>\n <mrow>\n <mi>X</mi>\n </mrow>\n <annotation> $X$</annotation>\n </semantics></math> has high connectedness. Given a graph <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <mi>X</mi>\n \n <mo>⊆</mo>\n \n <mi>V</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $X\\subseteq V(G)$</annotation>\n </semantics></math>, we say <math>\n <semantics>\n <mrow>\n <mi>M</mi>\n </mrow>\n <annotation> $M$</annotation>\n </semantics></math> is a <i>minor of</i> <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> <i>rooted at</i> <math>\n <semantics>\n <mrow>\n <mi>X</mi>\n </mrow>\n <annotation> $X$</annotation>\n </semantics></math>, if <math>\n <semantics>\n <mrow>\n <mi>M</mi>\n </mrow>\n <annotation> $M$</annotation>\n </semantics></math> is a minor of <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> such that each bag of <math>\n <semantics>\n <mrow>\n <mi>M</mi>\n </mrow>\n <annotation> $M$</annotation>\n </semantics></math> contains at most one vertex of <math>\n <semantics>\n <mrow>\n <mi>X</mi>\n </mrow>\n <annotation> $X$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <mi>X</mi>\n </mrow>\n <annotation> $X$</annotation>\n </semantics></math> is a subset of the union of all bags. We show that <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> has a highly connected minor rooted at <math>\n <semantics>\n <mrow>\n <mi>X</mi>\n </mrow>\n <annotation> $X$</annotation>\n </semantics></math> if <math>\n <semantics>\n <mrow>\n <mi>X</mi>\n \n <mo>⊆</mo>\n \n <mi>V</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $X\\subseteq V(G)$</annotation>\n </semantics></math> cannot be separated in <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> by removing a few vertices of <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>. Combining these investigations and the theory of Tutte paths in the planar case yields locally spanning versions of six well-known results about degree-bounded trees, Hamiltonian paths and cycles, and 2-connected subgraphs of graphs.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"105 2","pages":"209-229"},"PeriodicalIF":0.9000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rooted minors and locally spanning subgraphs\",\"authors\":\"Thomas Böhme,&nbsp;Jochen Harant,&nbsp;Matthias Kriesell,&nbsp;Samuel Mohr,&nbsp;Jens M. Schmidt\",\"doi\":\"10.1002/jgt.23012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Results on the existence of various types of spanning subgraphs of graphs are milestones in structural graph theory and have been diversified in several directions. In the present paper, we consider “local” versions of such statements. In 1966, for instance, D. W. Barnette proved that a 3-connected planar graph contains a spanning tree of maximum degree at most 3. A local translation of this statement is that if <math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> is a planar graph, <math>\\n <semantics>\\n <mrow>\\n <mi>X</mi>\\n </mrow>\\n <annotation> $X$</annotation>\\n </semantics></math> is a subset of specified vertices of <math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> such that <math>\\n <semantics>\\n <mrow>\\n <mi>X</mi>\\n </mrow>\\n <annotation> $X$</annotation>\\n </semantics></math> cannot be separated in <math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> by removing two or fewer vertices of <math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>, then <math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> has a tree of maximum degree at most 3 containing all vertices of <math>\\n <semantics>\\n <mrow>\\n <mi>X</mi>\\n </mrow>\\n <annotation> $X$</annotation>\\n </semantics></math>. Our results constitute a general machinery for strengthening statements about <math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-connected graphs (for <math>\\n <semantics>\\n <mrow>\\n <mn>1</mn>\\n \\n <mo>≤</mo>\\n \\n <mi>k</mi>\\n \\n <mo>≤</mo>\\n \\n <mn>4</mn>\\n </mrow>\\n <annotation> $1\\\\le k\\\\le 4$</annotation>\\n </semantics></math>) to locally spanning versions, that is, subgraphs containing a set <math>\\n <semantics>\\n <mrow>\\n <mi>X</mi>\\n \\n <mo>⊆</mo>\\n \\n <mi>V</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $X\\\\subseteq V(G)$</annotation>\\n </semantics></math> of a (not necessarily planar) graph <math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> in which only <math>\\n <semantics>\\n <mrow>\\n <mi>X</mi>\\n </mrow>\\n <annotation> $X$</annotation>\\n </semantics></math> has high connectedness. Given a graph <math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <mrow>\\n <mi>X</mi>\\n \\n <mo>⊆</mo>\\n \\n <mi>V</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $X\\\\subseteq V(G)$</annotation>\\n </semantics></math>, we say <math>\\n <semantics>\\n <mrow>\\n <mi>M</mi>\\n </mrow>\\n <annotation> $M$</annotation>\\n </semantics></math> is a <i>minor of</i> <math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> <i>rooted at</i> <math>\\n <semantics>\\n <mrow>\\n <mi>X</mi>\\n </mrow>\\n <annotation> $X$</annotation>\\n </semantics></math>, if <math>\\n <semantics>\\n <mrow>\\n <mi>M</mi>\\n </mrow>\\n <annotation> $M$</annotation>\\n </semantics></math> is a minor of <math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> such that each bag of <math>\\n <semantics>\\n <mrow>\\n <mi>M</mi>\\n </mrow>\\n <annotation> $M$</annotation>\\n </semantics></math> contains at most one vertex of <math>\\n <semantics>\\n <mrow>\\n <mi>X</mi>\\n </mrow>\\n <annotation> $X$</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <mrow>\\n <mi>X</mi>\\n </mrow>\\n <annotation> $X$</annotation>\\n </semantics></math> is a subset of the union of all bags. We show that <math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> has a highly connected minor rooted at <math>\\n <semantics>\\n <mrow>\\n <mi>X</mi>\\n </mrow>\\n <annotation> $X$</annotation>\\n </semantics></math> if <math>\\n <semantics>\\n <mrow>\\n <mi>X</mi>\\n \\n <mo>⊆</mo>\\n \\n <mi>V</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $X\\\\subseteq V(G)$</annotation>\\n </semantics></math> cannot be separated in <math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> by removing a few vertices of <math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>. Combining these investigations and the theory of Tutte paths in the planar case yields locally spanning versions of six well-known results about degree-bounded trees, Hamiltonian paths and cycles, and 2-connected subgraphs of graphs.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"105 2\",\"pages\":\"209-229\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23012\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23012","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

图的各种类型的生成子图的存在性的研究结果是结构图理论的里程碑,并在多个方向上得到了发展。在本文中,我们考虑这些陈述的“局部”版本。例如,在1966年,D. W. Barnette证明了一个3连通的平面图包含一个最大度不超过3的生成树。这句话的局部翻译是,如果是一个平面图,是不能通过移除的两个或更少的顶点来分离的特定顶点的子集,那么有一个包含所有顶点的最大度不超过3的树。我们的结果构成了一个通用的机制,用于将关于连通图(for)的陈述强化为局部生成版本,即包含一组(不一定是平面)图的子图,其中只有高连通性。给定一个图,我们说它是根于的次次,它是次次,使得每个袋最多包含一个顶点并且是所有袋的并集的子集。我们证明了它有一个高度连接的小根,它不能通过移除的几个顶点来分离。结合这些研究和平面情况下的Tutte路径理论,我们得到了关于度有界树、哈密顿路径和环以及图的2连通子图的六个著名结果的局部生成版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rooted minors and locally spanning subgraphs

Results on the existence of various types of spanning subgraphs of graphs are milestones in structural graph theory and have been diversified in several directions. In the present paper, we consider “local” versions of such statements. In 1966, for instance, D. W. Barnette proved that a 3-connected planar graph contains a spanning tree of maximum degree at most 3. A local translation of this statement is that if G $G$ is a planar graph, X $X$ is a subset of specified vertices of G $G$ such that X $X$ cannot be separated in G $G$ by removing two or fewer vertices of G $G$ , then G $G$ has a tree of maximum degree at most 3 containing all vertices of X $X$ . Our results constitute a general machinery for strengthening statements about k $k$ -connected graphs (for 1 k 4 $1\le k\le 4$ ) to locally spanning versions, that is, subgraphs containing a set X V ( G ) $X\subseteq V(G)$ of a (not necessarily planar) graph G $G$ in which only X $X$ has high connectedness. Given a graph G $G$ and X V ( G ) $X\subseteq V(G)$ , we say M $M$ is a minor of G $G$ rooted at X $X$ , if M $M$ is a minor of G $G$ such that each bag of M $M$ contains at most one vertex of X $X$ and X $X$ is a subset of the union of all bags. We show that G $G$ has a highly connected minor rooted at X $X$ if X V ( G ) $X\subseteq V(G)$ cannot be separated in G $G$ by removing a few vertices of G $G$ . Combining these investigations and the theory of Tutte paths in the planar case yields locally spanning versions of six well-known results about degree-bounded trees, Hamiltonian paths and cycles, and 2-connected subgraphs of graphs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
期刊最新文献
Issue Information Edge‐transitive cubic graphs of twice square‐free order Breaking small automorphisms by list colourings Compatible powers of Hamilton cycles in dense graphs Fractional factors and component factors in graphs with isolated toughness smaller than 1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1