在家进行无人值守睡眠监测的机器学习睡眠呼吸暂停检测

Stein Kristiansen, K. Nikolaidis, T. Plagemann, V. Goebel, G. Traaen, B. Øverland, L. Aakerøy, T. Hunt, J. P. Loennechen, S. Steinshamn, C. Bendz, O. Anfinsen, L. Gullestad, H. Akre
{"title":"在家进行无人值守睡眠监测的机器学习睡眠呼吸暂停检测","authors":"Stein Kristiansen, K. Nikolaidis, T. Plagemann, V. Goebel, G. Traaen, B. Øverland, L. Aakerøy, T. Hunt, J. P. Loennechen, S. Steinshamn, C. Bendz, O. Anfinsen, L. Gullestad, H. Akre","doi":"10.1145/3433987","DOIUrl":null,"url":null,"abstract":"Sleep apnea is a common and strongly under-diagnosed severe sleep-related respiratory disorder with periods of disrupted or reduced breathing during sleep. To diagnose sleep apnea, sleep data are collected with either polysomnography or polygraphy and scored by a sleep expert. We investigate in this work the use of supervised machine learning to automate the analysis of polygraphy data from the A3 study containing more than 7,400 hours of sleep monitoring data from 579 patients. We conduct a systematic comparative study of classification performance and resource use with different combinations of 27 classifiers and four sleep signals. The classifiers achieve up to 0.8941 accuracy (kappa: 0.7877) when using all four signal types simultaneously and up to 0.8543 accuracy (kappa: 0.7080) with only one signal, i.e., oxygen saturation. Methods based on deep learning outperform other methods by a large margin. All deep learning methods achieve nearly the same maximum classification performance even when they have very different architectures and sizes. When jointly accounting for classification performance, resource consumption and the ability to achieve with less training data high classification performance, we find that convolutional neural networks substantially outperform the other classifiers.","PeriodicalId":72043,"journal":{"name":"ACM transactions on computing for healthcare","volume":"2 1","pages":"1 - 25"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3433987","citationCount":"14","resultStr":"{\"title\":\"Machine Learning for Sleep Apnea Detection with Unattended Sleep Monitoring at Home\",\"authors\":\"Stein Kristiansen, K. Nikolaidis, T. Plagemann, V. Goebel, G. Traaen, B. Øverland, L. Aakerøy, T. Hunt, J. P. Loennechen, S. Steinshamn, C. Bendz, O. Anfinsen, L. Gullestad, H. Akre\",\"doi\":\"10.1145/3433987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sleep apnea is a common and strongly under-diagnosed severe sleep-related respiratory disorder with periods of disrupted or reduced breathing during sleep. To diagnose sleep apnea, sleep data are collected with either polysomnography or polygraphy and scored by a sleep expert. We investigate in this work the use of supervised machine learning to automate the analysis of polygraphy data from the A3 study containing more than 7,400 hours of sleep monitoring data from 579 patients. We conduct a systematic comparative study of classification performance and resource use with different combinations of 27 classifiers and four sleep signals. The classifiers achieve up to 0.8941 accuracy (kappa: 0.7877) when using all four signal types simultaneously and up to 0.8543 accuracy (kappa: 0.7080) with only one signal, i.e., oxygen saturation. Methods based on deep learning outperform other methods by a large margin. All deep learning methods achieve nearly the same maximum classification performance even when they have very different architectures and sizes. When jointly accounting for classification performance, resource consumption and the ability to achieve with less training data high classification performance, we find that convolutional neural networks substantially outperform the other classifiers.\",\"PeriodicalId\":72043,\"journal\":{\"name\":\"ACM transactions on computing for healthcare\",\"volume\":\"2 1\",\"pages\":\"1 - 25\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1145/3433987\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM transactions on computing for healthcare\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3433987\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM transactions on computing for healthcare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3433987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

睡眠呼吸暂停是一种常见且诊断严重不足的严重睡眠相关呼吸系统疾病,在睡眠期间呼吸会中断或减少。为了诊断睡眠呼吸暂停,通过多导睡眠图或多导睡眠描记术收集睡眠数据,并由睡眠专家进行评分。在这项工作中,我们研究了使用监督机器学习来自动分析A3研究中的测谎数据,该研究包含579名患者的7400多小时睡眠监测数据。我们对27个分类器和4个睡眠信号的不同组合的分类性能和资源使用进行了系统的比较研究。当同时使用所有四种信号类型时,分类器实现高达0.8941的准确度(kappa:0.07877),并且当仅使用一个信号(即氧饱和度)时,分类器达到高达0.8543的准确率(kappa:0.7080)。基于深度学习的方法在很大程度上优于其他方法。所有深度学习方法即使具有非常不同的架构和大小,也能实现几乎相同的最大分类性能。当综合考虑分类性能、资源消耗和用较少训练数据实现高分类性能的能力时,我们发现卷积神经网络显著优于其他分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Learning for Sleep Apnea Detection with Unattended Sleep Monitoring at Home
Sleep apnea is a common and strongly under-diagnosed severe sleep-related respiratory disorder with periods of disrupted or reduced breathing during sleep. To diagnose sleep apnea, sleep data are collected with either polysomnography or polygraphy and scored by a sleep expert. We investigate in this work the use of supervised machine learning to automate the analysis of polygraphy data from the A3 study containing more than 7,400 hours of sleep monitoring data from 579 patients. We conduct a systematic comparative study of classification performance and resource use with different combinations of 27 classifiers and four sleep signals. The classifiers achieve up to 0.8941 accuracy (kappa: 0.7877) when using all four signal types simultaneously and up to 0.8543 accuracy (kappa: 0.7080) with only one signal, i.e., oxygen saturation. Methods based on deep learning outperform other methods by a large margin. All deep learning methods achieve nearly the same maximum classification performance even when they have very different architectures and sizes. When jointly accounting for classification performance, resource consumption and the ability to achieve with less training data high classification performance, we find that convolutional neural networks substantially outperform the other classifiers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
0.00%
发文量
0
期刊最新文献
A method for comparing time series by untangling time-dependent and independent variations in biological processes AI-assisted Diagnosing, Monitoring, and Treatment of Mental Disorders: A Survey HEalthRecordBERT (HERBERT): leveraging transformers on electronic health records for chronic kidney disease risk stratification iScan: Detection of Colorectal Cancer From CT Scan Images Using Deep Learning A Computation Model to Estimate Interaction Intensity through Non-verbal Behavioral Cues: A Case Study of Intimate Couples under the Impact of Acute Alcohol Consumption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1