{"title":"基于广义比例积分观测器的四旋翼无人机鲁棒跟踪设计方法","authors":"Shenghui Li, Zhenxing Sun","doi":"10.1177/17298806221117052","DOIUrl":null,"url":null,"abstract":"This article mainly studies the trajectory tracking control for quadrotor unmanned aerial vehicle with unknown time-varying disturbances including parametric uncertainties, model errors, and external disturbances such as wind effects. Conventional backstepping control schemes usually cannot guarantee the performance when it faces the time-varying disturbances. Improved schemes, such as integral backstepping, can only compensate the disturbances in a relatively slow way. By introducing disturbance observer technology into the design of controller, a composite generalized proportional integral observer–based robust control design method is developed. First, by utilizing the generalized proportional integral observer, the lumped time-varying disturbances of unmanned aerial vehicle are estimated. Secondly, combining the value of disturbance estimation and feedforward controller by using backstepping control technology together, a composite controller has been developed, which can be called as backstepping control + generalized proportional integral observer. The proposed control method has a better capability of disturbance rejection and is easy to implement. Simulation and experimental results illustrate the good robustness and tracking performance of the proposed scheme.","PeriodicalId":50343,"journal":{"name":"International Journal of Advanced Robotic Systems","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A generalized proportional integral observer–based robust tracking design approach for quadrotor unmanned aerial vehicle\",\"authors\":\"Shenghui Li, Zhenxing Sun\",\"doi\":\"10.1177/17298806221117052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article mainly studies the trajectory tracking control for quadrotor unmanned aerial vehicle with unknown time-varying disturbances including parametric uncertainties, model errors, and external disturbances such as wind effects. Conventional backstepping control schemes usually cannot guarantee the performance when it faces the time-varying disturbances. Improved schemes, such as integral backstepping, can only compensate the disturbances in a relatively slow way. By introducing disturbance observer technology into the design of controller, a composite generalized proportional integral observer–based robust control design method is developed. First, by utilizing the generalized proportional integral observer, the lumped time-varying disturbances of unmanned aerial vehicle are estimated. Secondly, combining the value of disturbance estimation and feedforward controller by using backstepping control technology together, a composite controller has been developed, which can be called as backstepping control + generalized proportional integral observer. The proposed control method has a better capability of disturbance rejection and is easy to implement. Simulation and experimental results illustrate the good robustness and tracking performance of the proposed scheme.\",\"PeriodicalId\":50343,\"journal\":{\"name\":\"International Journal of Advanced Robotic Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Robotic Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/17298806221117052\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/17298806221117052","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
A generalized proportional integral observer–based robust tracking design approach for quadrotor unmanned aerial vehicle
This article mainly studies the trajectory tracking control for quadrotor unmanned aerial vehicle with unknown time-varying disturbances including parametric uncertainties, model errors, and external disturbances such as wind effects. Conventional backstepping control schemes usually cannot guarantee the performance when it faces the time-varying disturbances. Improved schemes, such as integral backstepping, can only compensate the disturbances in a relatively slow way. By introducing disturbance observer technology into the design of controller, a composite generalized proportional integral observer–based robust control design method is developed. First, by utilizing the generalized proportional integral observer, the lumped time-varying disturbances of unmanned aerial vehicle are estimated. Secondly, combining the value of disturbance estimation and feedforward controller by using backstepping control technology together, a composite controller has been developed, which can be called as backstepping control + generalized proportional integral observer. The proposed control method has a better capability of disturbance rejection and is easy to implement. Simulation and experimental results illustrate the good robustness and tracking performance of the proposed scheme.
期刊介绍:
International Journal of Advanced Robotic Systems (IJARS) is a JCR ranked, peer-reviewed open access journal covering the full spectrum of robotics research. The journal is addressed to both practicing professionals and researchers in the field of robotics and its specialty areas. IJARS features fourteen topic areas each headed by a Topic Editor-in-Chief, integrating all aspects of research in robotics under the journal''s domain.