基于迭代学习控制的双馈感应发电机电能质量改进控制

Q3 Engineering Diagnostyka Pub Date : 2023-08-21 DOI:10.29354/diag/169462
Ooussama Belkacem Djaidja, H. Mekki, Samir Zeghlache, A. Djerioui
{"title":"基于迭代学习控制的双馈感应发电机电能质量改进控制","authors":"Ooussama Belkacem Djaidja, H. Mekki, Samir Zeghlache, A. Djerioui","doi":"10.29354/diag/169462","DOIUrl":null,"url":null,"abstract":"This work presents a new Fault Tolerant Control approach for a doubly fed induction generator using Iterative Learning Control when the fault occurs. The goal of this research is to apply the proposed ILC controller in conjunction with vector control for doubly fed induction generator to enhance its reliability and availability under broken rotor bars. However, the performances of classical VC control are often characterized by their inability to deal with the effects of faults. To overcome these drawbacks, a combination of VC control and iterative learning control is described. The input control signal of the VC controller is gradually regulated by the ILC harmonic compensator in order to eliminate the faults effect. The improvement of this approach related to active and reactive power ripples overshoot and response time have been explained. Which active and reactive power response time have been reduced more than 84% and 87.5 % respectively. The active and reactive power overshoots have been reduced about 45% and 35% respectively. The obtained results emphasize the efficiency and the ability of the proposed FTC to enhance the power quality in faulty condition.","PeriodicalId":52164,"journal":{"name":"Diagnostyka","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new improved control for power quality enhancement in double fed induction generator using iterative learning control\",\"authors\":\"Ooussama Belkacem Djaidja, H. Mekki, Samir Zeghlache, A. Djerioui\",\"doi\":\"10.29354/diag/169462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a new Fault Tolerant Control approach for a doubly fed induction generator using Iterative Learning Control when the fault occurs. The goal of this research is to apply the proposed ILC controller in conjunction with vector control for doubly fed induction generator to enhance its reliability and availability under broken rotor bars. However, the performances of classical VC control are often characterized by their inability to deal with the effects of faults. To overcome these drawbacks, a combination of VC control and iterative learning control is described. The input control signal of the VC controller is gradually regulated by the ILC harmonic compensator in order to eliminate the faults effect. The improvement of this approach related to active and reactive power ripples overshoot and response time have been explained. Which active and reactive power response time have been reduced more than 84% and 87.5 % respectively. The active and reactive power overshoots have been reduced about 45% and 35% respectively. The obtained results emphasize the efficiency and the ability of the proposed FTC to enhance the power quality in faulty condition.\",\"PeriodicalId\":52164,\"journal\":{\"name\":\"Diagnostyka\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diagnostyka\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29354/diag/169462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostyka","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29354/diag/169462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的双馈感应发电机故障容错控制方法,该方法在故障发生时使用迭代学习控制。本研究的目标是将所提出的ILC控制器与矢量控制相结合应用于双馈感应发电机,以提高其在转子断条情况下的可靠性和可用性。然而,经典VC控制的性能往往以其无法处理故障影响为特征。为了克服这些缺点,描述了VC控制和迭代学习控制的结合。VC控制器的输入控制信号由ILC谐波补偿器逐渐调节,以消除故障影响。已经解释了这种方法在有功和无功功率纹波过冲和响应时间方面的改进。其中有功和无功响应时间分别减少了84%和87.5%以上。有功功率和无功功率过冲分别减少了约45%和35%。所获得的结果强调了所提出的FTC在故障条件下提高电能质量的效率和能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new improved control for power quality enhancement in double fed induction generator using iterative learning control
This work presents a new Fault Tolerant Control approach for a doubly fed induction generator using Iterative Learning Control when the fault occurs. The goal of this research is to apply the proposed ILC controller in conjunction with vector control for doubly fed induction generator to enhance its reliability and availability under broken rotor bars. However, the performances of classical VC control are often characterized by their inability to deal with the effects of faults. To overcome these drawbacks, a combination of VC control and iterative learning control is described. The input control signal of the VC controller is gradually regulated by the ILC harmonic compensator in order to eliminate the faults effect. The improvement of this approach related to active and reactive power ripples overshoot and response time have been explained. Which active and reactive power response time have been reduced more than 84% and 87.5 % respectively. The active and reactive power overshoots have been reduced about 45% and 35% respectively. The obtained results emphasize the efficiency and the ability of the proposed FTC to enhance the power quality in faulty condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Diagnostyka
Diagnostyka Engineering-Mechanical Engineering
CiteScore
2.20
自引率
0.00%
发文量
41
期刊介绍: Diagnostyka – is a quarterly published by the Polish Society of Technical Diagnostics (PSTD). The journal “Diagnostyka” was established by the decision of the Presidium of Main Board of the Polish Society of Technical Diagnostics on August, 21st 2000 and replaced published since 1990 reference book of the PSTD named “Diagnosta”. In the years 2000-2003 there were issued annually two numbers of the journal, since 2004 “Diagnostyka” is issued as a quarterly. Research areas covered include: -theory of the technical diagnostics, -experimental diagnostic research of processes, objects and systems, -analytical, symptom and simulation models of technical objects, -algorithms, methods and devices for diagnosing, prognosis and genesis of condition of technical objects, -methods for detection, localization and identification of damages of technical objects, -artificial intelligence in diagnostics, neural nets, fuzzy systems, genetic algorithms, expert systems, -application of technical diagnostics, -diagnostic issues in mechanical and civil engineering, -medical and biological diagnostics with signal processing application, -structural health monitoring, -machines, -noise and vibration, -analysis of technical and civil systems.
期刊最新文献
Construction and application of a bearing fault diagnosis model based on improved GWO algorithm Failure identification and isolation of DC-DC boost converter using a sliding mode controller and adaptive threshold Diagnosis of voltage unbalance state in a system with power converter Diagnostics of production processes using selected Lean Manufacturing tools Enhancing the performance of solar boost converter using Gray Wolf optimizer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1