Sameer Sajja, B. Roark, Morgan Chandler, Marcus Jones
{"title":"眨眼就会错过:一种新的核酸生物传感策略","authors":"Sameer Sajja, B. Roark, Morgan Chandler, Marcus Jones","doi":"10.1515/rnan-2017-0002","DOIUrl":null,"url":null,"abstract":"Abstract Fluorescent biosensors typically use energy or electron transfer to modulate the emission from a fluorophore. This requirement often makes it difficult to change the biosensor to make it selective to a difference target. In this research highlight we describe a recently reported strategy that relies, for the first time, on fluorescence blinking from nucleic acid-coupled quantum dots to report the presence of a target molecule. This strategy produces a decoupled biosensor, whose fluorescence output is not directly modulated by interaction with the target. The resulting biosensor can be readily modified to sense any target that can be selectively bound to nucleic acids and is therefore much more widely applicable than the vast majority of fluorescent sensors that have been reported.","PeriodicalId":93282,"journal":{"name":"DNA and RNA nanotechnology","volume":"4 1","pages":"21 - 23"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/rnan-2017-0002","citationCount":"0","resultStr":"{\"title\":\"Blink and you’ll miss it: a new biosensing strategy with nucleic acids\",\"authors\":\"Sameer Sajja, B. Roark, Morgan Chandler, Marcus Jones\",\"doi\":\"10.1515/rnan-2017-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Fluorescent biosensors typically use energy or electron transfer to modulate the emission from a fluorophore. This requirement often makes it difficult to change the biosensor to make it selective to a difference target. In this research highlight we describe a recently reported strategy that relies, for the first time, on fluorescence blinking from nucleic acid-coupled quantum dots to report the presence of a target molecule. This strategy produces a decoupled biosensor, whose fluorescence output is not directly modulated by interaction with the target. The resulting biosensor can be readily modified to sense any target that can be selectively bound to nucleic acids and is therefore much more widely applicable than the vast majority of fluorescent sensors that have been reported.\",\"PeriodicalId\":93282,\"journal\":{\"name\":\"DNA and RNA nanotechnology\",\"volume\":\"4 1\",\"pages\":\"21 - 23\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/rnan-2017-0002\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DNA and RNA nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/rnan-2017-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA and RNA nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rnan-2017-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Blink and you’ll miss it: a new biosensing strategy with nucleic acids
Abstract Fluorescent biosensors typically use energy or electron transfer to modulate the emission from a fluorophore. This requirement often makes it difficult to change the biosensor to make it selective to a difference target. In this research highlight we describe a recently reported strategy that relies, for the first time, on fluorescence blinking from nucleic acid-coupled quantum dots to report the presence of a target molecule. This strategy produces a decoupled biosensor, whose fluorescence output is not directly modulated by interaction with the target. The resulting biosensor can be readily modified to sense any target that can be selectively bound to nucleic acids and is therefore much more widely applicable than the vast majority of fluorescent sensors that have been reported.