Ouafa Othmani, K. Khanchoul, Sana Boubehziz, H. Bouguerra, Abderraouf Benslama, J. Navarro-Pedreño
{"title":"基于地统计分析的莱茵河流域土壤可蚀性空间变异","authors":"Ouafa Othmani, K. Khanchoul, Sana Boubehziz, H. Bouguerra, Abderraouf Benslama, J. Navarro-Pedreño","doi":"10.3390/soilsystems7020032","DOIUrl":null,"url":null,"abstract":"Soil erodibility is one of the most crucial factors used to estimate soil erosion by applying modeling techniques. Soil data from soil maps are commonly used to create maps of soil erodibility for soil conservation planning. This study analyzed the spatial variability of soil erodibility by using a digital elevation model (DTM) and surface soil sample data at the Rhirane catchment (Algeria). A total of 132 soil samples were collected of up to 20 cm in depth. The spatial distributions of the K-value and soil physical properties (permeability, organic matter, and texture) were used to elaborate ordinary Kriging interpolation maps. Results showed that mean values of soil organic matter content were statistically different between Chromic Cambisols (M = 3.4%) vs. Calcic Cambisols (M = 2.2%). The analysis of variance of the organic matter provided a tool for identifying significant differences when comparing means between the soil types. The soil granulometry is mainly composed of silt and fine sand. The soil erodibility showed values varying between 0.012 and 0.077 with an average of 0.034, which was greater in soils with calcic horizons. Statistical evaluation by using Pearson’s correlation revealed positive correlations between erodibility and silt (0.63%), and negative correlations with sand (−0.16%), clay (−0.56%), organic matter (−0.32%), permeability (−0.41%), soil structure (−0.40%), and the soil stability index (−0.26%). The variability analysis of the K-factor showed moderate spatial dependency with the soil erodibility map indicating moderate to highly erodible risk in cropland and sparse grassland land uses. Overall, the study provides scientific support for soil conservation management and appropriate agricultural food practices for food supply.","PeriodicalId":21908,"journal":{"name":"Soil Systems","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Spatial Variability of Soil Erodibility at the Rhirane Catchment Using Geostatistical Analysis\",\"authors\":\"Ouafa Othmani, K. Khanchoul, Sana Boubehziz, H. Bouguerra, Abderraouf Benslama, J. Navarro-Pedreño\",\"doi\":\"10.3390/soilsystems7020032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soil erodibility is one of the most crucial factors used to estimate soil erosion by applying modeling techniques. Soil data from soil maps are commonly used to create maps of soil erodibility for soil conservation planning. This study analyzed the spatial variability of soil erodibility by using a digital elevation model (DTM) and surface soil sample data at the Rhirane catchment (Algeria). A total of 132 soil samples were collected of up to 20 cm in depth. The spatial distributions of the K-value and soil physical properties (permeability, organic matter, and texture) were used to elaborate ordinary Kriging interpolation maps. Results showed that mean values of soil organic matter content were statistically different between Chromic Cambisols (M = 3.4%) vs. Calcic Cambisols (M = 2.2%). The analysis of variance of the organic matter provided a tool for identifying significant differences when comparing means between the soil types. The soil granulometry is mainly composed of silt and fine sand. The soil erodibility showed values varying between 0.012 and 0.077 with an average of 0.034, which was greater in soils with calcic horizons. Statistical evaluation by using Pearson’s correlation revealed positive correlations between erodibility and silt (0.63%), and negative correlations with sand (−0.16%), clay (−0.56%), organic matter (−0.32%), permeability (−0.41%), soil structure (−0.40%), and the soil stability index (−0.26%). The variability analysis of the K-factor showed moderate spatial dependency with the soil erodibility map indicating moderate to highly erodible risk in cropland and sparse grassland land uses. Overall, the study provides scientific support for soil conservation management and appropriate agricultural food practices for food supply.\",\"PeriodicalId\":21908,\"journal\":{\"name\":\"Soil Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/soilsystems7020032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/soilsystems7020032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Spatial Variability of Soil Erodibility at the Rhirane Catchment Using Geostatistical Analysis
Soil erodibility is one of the most crucial factors used to estimate soil erosion by applying modeling techniques. Soil data from soil maps are commonly used to create maps of soil erodibility for soil conservation planning. This study analyzed the spatial variability of soil erodibility by using a digital elevation model (DTM) and surface soil sample data at the Rhirane catchment (Algeria). A total of 132 soil samples were collected of up to 20 cm in depth. The spatial distributions of the K-value and soil physical properties (permeability, organic matter, and texture) were used to elaborate ordinary Kriging interpolation maps. Results showed that mean values of soil organic matter content were statistically different between Chromic Cambisols (M = 3.4%) vs. Calcic Cambisols (M = 2.2%). The analysis of variance of the organic matter provided a tool for identifying significant differences when comparing means between the soil types. The soil granulometry is mainly composed of silt and fine sand. The soil erodibility showed values varying between 0.012 and 0.077 with an average of 0.034, which was greater in soils with calcic horizons. Statistical evaluation by using Pearson’s correlation revealed positive correlations between erodibility and silt (0.63%), and negative correlations with sand (−0.16%), clay (−0.56%), organic matter (−0.32%), permeability (−0.41%), soil structure (−0.40%), and the soil stability index (−0.26%). The variability analysis of the K-factor showed moderate spatial dependency with the soil erodibility map indicating moderate to highly erodible risk in cropland and sparse grassland land uses. Overall, the study provides scientific support for soil conservation management and appropriate agricultural food practices for food supply.