{"title":"生物运输网络的优化","authors":"Yuan Hu","doi":"10.4208/eajam.180521.130721","DOIUrl":null,"url":null,"abstract":". Transport networks such as blood vessel systems and leaf venation are uni-versally required for large-size living organisms in order to overcome the low efficiency of the diffusion in large scale mass transportation. Despite substantial differences in living organisms, such networks have many common patterns — viz. biological transport networks are made up of tubes and flows in tubes deliver target substances. Besides, these networks maintain a tree-like backbone attached with small loops. Experimental and mathematical studies show many similarities in biological mechanisms, which drive structural optimisation in biological transport networks. It is worth noting that the structural optimisation of transport networks in living organisms is achieved in the sense of energy cost as a consequence of natural selection. In this review, we recall the exploration history and show mathematical structures used in the design of biological transport networks.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Optimisation of Biological Transport Networks\",\"authors\":\"Yuan Hu\",\"doi\":\"10.4208/eajam.180521.130721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Transport networks such as blood vessel systems and leaf venation are uni-versally required for large-size living organisms in order to overcome the low efficiency of the diffusion in large scale mass transportation. Despite substantial differences in living organisms, such networks have many common patterns — viz. biological transport networks are made up of tubes and flows in tubes deliver target substances. Besides, these networks maintain a tree-like backbone attached with small loops. Experimental and mathematical studies show many similarities in biological mechanisms, which drive structural optimisation in biological transport networks. It is worth noting that the structural optimisation of transport networks in living organisms is achieved in the sense of energy cost as a consequence of natural selection. In this review, we recall the exploration history and show mathematical structures used in the design of biological transport networks.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4208/eajam.180521.130721\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/eajam.180521.130721","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
. Transport networks such as blood vessel systems and leaf venation are uni-versally required for large-size living organisms in order to overcome the low efficiency of the diffusion in large scale mass transportation. Despite substantial differences in living organisms, such networks have many common patterns — viz. biological transport networks are made up of tubes and flows in tubes deliver target substances. Besides, these networks maintain a tree-like backbone attached with small loops. Experimental and mathematical studies show many similarities in biological mechanisms, which drive structural optimisation in biological transport networks. It is worth noting that the structural optimisation of transport networks in living organisms is achieved in the sense of energy cost as a consequence of natural selection. In this review, we recall the exploration history and show mathematical structures used in the design of biological transport networks.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.