Jianling Tan, Yichao Zhan, Yi Tang, Weixin Bao, Yin Tian
{"title":"应用可解释和轻量级卷积神经网络对ASD患者视觉联合注意训练的脑电图解码效果","authors":"Jianling Tan, Yichao Zhan, Yi Tang, Weixin Bao, Yin Tian","doi":"10.1007/s11571-023-09947-x","DOIUrl":null,"url":null,"abstract":"<p><p>Visual joint attention, the ability to track gaze and recognize intent, plays a key role in the development of social and language skills in health humans, which is performed abnormally hard in autism spectrum disorder (ASD). The traditional convolutional neural network, EEGnet, is an effective model for decoding technology, but few studies have utilized this model to address attentional training in ASD patients. In this study, EEGNet was used to decode the P300 signal elicited by training and the saliency map method was used to visualize the cognitive properties of ASD patients during visual attention. The results showed that in the spatial distribution, the parietal lobe was the main region of classification contribution, especially for Pz electrode. In the temporal information, the time period from 300 to 500 ms produced the greatest contribution to the electroencephalogram (EEG) classification, especially around 300 ms. After training for ASD patients, the gradient contribution was significantly enhanced at 300 ms, which was effective only in social scenarios. Meanwhile, with the increase of joint attention training, the P300 latency of ASD patients gradually shifted forward in social scenarios, but this phenomenon was not obvious in non-social scenarios. Our results indicated that joint attention training could improve the cognitive ability and responsiveness of social characteristics in ASD patients.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11143091/pdf/","citationCount":"0","resultStr":"{\"title\":\"EEG decoding for effects of visual joint attention training on ASD patients with interpretable and lightweight convolutional neural network.\",\"authors\":\"Jianling Tan, Yichao Zhan, Yi Tang, Weixin Bao, Yin Tian\",\"doi\":\"10.1007/s11571-023-09947-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Visual joint attention, the ability to track gaze and recognize intent, plays a key role in the development of social and language skills in health humans, which is performed abnormally hard in autism spectrum disorder (ASD). The traditional convolutional neural network, EEGnet, is an effective model for decoding technology, but few studies have utilized this model to address attentional training in ASD patients. In this study, EEGNet was used to decode the P300 signal elicited by training and the saliency map method was used to visualize the cognitive properties of ASD patients during visual attention. The results showed that in the spatial distribution, the parietal lobe was the main region of classification contribution, especially for Pz electrode. In the temporal information, the time period from 300 to 500 ms produced the greatest contribution to the electroencephalogram (EEG) classification, especially around 300 ms. After training for ASD patients, the gradient contribution was significantly enhanced at 300 ms, which was effective only in social scenarios. Meanwhile, with the increase of joint attention training, the P300 latency of ASD patients gradually shifted forward in social scenarios, but this phenomenon was not obvious in non-social scenarios. Our results indicated that joint attention training could improve the cognitive ability and responsiveness of social characteristics in ASD patients.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11143091/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-023-09947-x\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/3/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-023-09947-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
EEG decoding for effects of visual joint attention training on ASD patients with interpretable and lightweight convolutional neural network.
Visual joint attention, the ability to track gaze and recognize intent, plays a key role in the development of social and language skills in health humans, which is performed abnormally hard in autism spectrum disorder (ASD). The traditional convolutional neural network, EEGnet, is an effective model for decoding technology, but few studies have utilized this model to address attentional training in ASD patients. In this study, EEGNet was used to decode the P300 signal elicited by training and the saliency map method was used to visualize the cognitive properties of ASD patients during visual attention. The results showed that in the spatial distribution, the parietal lobe was the main region of classification contribution, especially for Pz electrode. In the temporal information, the time period from 300 to 500 ms produced the greatest contribution to the electroencephalogram (EEG) classification, especially around 300 ms. After training for ASD patients, the gradient contribution was significantly enhanced at 300 ms, which was effective only in social scenarios. Meanwhile, with the increase of joint attention training, the P300 latency of ASD patients gradually shifted forward in social scenarios, but this phenomenon was not obvious in non-social scenarios. Our results indicated that joint attention training could improve the cognitive ability and responsiveness of social characteristics in ASD patients.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.