生活垃圾(蛋壳和香蕉皮颗粒)作为可持续和可再生资源,用于改善树脂刹车片性能:文献综述、技术经济分析、双尺寸加固实验、比较。。。

A. B. Nandiyanto, R. Ragadhita, M. Fiandini, Dwi Fitria Al Husaeni, Dwi Novia Al Husaeni, F. Fadhillah
{"title":"生活垃圾(蛋壳和香蕉皮颗粒)作为可持续和可再生资源,用于改善树脂刹车片性能:文献综述、技术经济分析、双尺寸加固实验、比较。。。","authors":"A. B. Nandiyanto, R. Ragadhita, M. Fiandini, Dwi Fitria Al Husaeni, Dwi Novia Al Husaeni, F. Fadhillah","doi":"10.21924/cst.7.1.2022.757","DOIUrl":null,"url":null,"abstract":"The objective of this study is to develop a new environmentally-friendly brake pad made from eggshells (Es) and banana peels (BPs) as reinforcement agents. E and BP particles as dual reinforcement with various compositions were combined. The E/BP mixture was then embedded on a polymer matrix composing a resin/hardener mixture in a 1:1 ratio. As a standard, brake pads using a single reinforcement of E and BP particles were also fabricated. Physical properties (i.e. particle size, surface roughness, morphology, and density), as well as mechanical properties (i.e. hardness, wear rate, and friction coefficient properties) were investigated. It was observed that using dual reinforcements was preferable (compared to using single reinforcements) because they had a synergistic effect on the mechanical properties of the brake pad. The best mechanical properties were found in dual reinforcements of brake pad specimens using E/BP particles with a higher BP ratio in which the value of the stiffness test, puncture test, wear rate, and coefficient of friction were 4.5 MPa, 86.80, 0.093×10-4 g/s.mm2, and 1.67×10-4, respectively. A high BP particle ratio played a dominant role in dual reinforcements, increasing the resin's bonding ability and resulting in good adhesion between the reinforcement and matrix. When compared to commercial brake pads, the brake pad specimens fabricated in this study met the standards. The techno-economic analysis also confirmed the prospective production of brake pads from E and BP particles (compared to commercial brake pads). From this research, it is expected that environmentally friendly and low-cost brake pads can be used to replace the dangerous friction materials.","PeriodicalId":36437,"journal":{"name":"Communications in Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Domestic waste (eggshells and banana peels particles) as sustainable and renewable resources for improving resin-based brakepad performance: Bibliometric literature review, techno-economic analysis, dual-sized reinforcing experiments, to comparison ...\",\"authors\":\"A. B. Nandiyanto, R. Ragadhita, M. Fiandini, Dwi Fitria Al Husaeni, Dwi Novia Al Husaeni, F. Fadhillah\",\"doi\":\"10.21924/cst.7.1.2022.757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this study is to develop a new environmentally-friendly brake pad made from eggshells (Es) and banana peels (BPs) as reinforcement agents. E and BP particles as dual reinforcement with various compositions were combined. The E/BP mixture was then embedded on a polymer matrix composing a resin/hardener mixture in a 1:1 ratio. As a standard, brake pads using a single reinforcement of E and BP particles were also fabricated. Physical properties (i.e. particle size, surface roughness, morphology, and density), as well as mechanical properties (i.e. hardness, wear rate, and friction coefficient properties) were investigated. It was observed that using dual reinforcements was preferable (compared to using single reinforcements) because they had a synergistic effect on the mechanical properties of the brake pad. The best mechanical properties were found in dual reinforcements of brake pad specimens using E/BP particles with a higher BP ratio in which the value of the stiffness test, puncture test, wear rate, and coefficient of friction were 4.5 MPa, 86.80, 0.093×10-4 g/s.mm2, and 1.67×10-4, respectively. A high BP particle ratio played a dominant role in dual reinforcements, increasing the resin's bonding ability and resulting in good adhesion between the reinforcement and matrix. When compared to commercial brake pads, the brake pad specimens fabricated in this study met the standards. The techno-economic analysis also confirmed the prospective production of brake pads from E and BP particles (compared to commercial brake pads). From this research, it is expected that environmentally friendly and low-cost brake pads can be used to replace the dangerous friction materials.\",\"PeriodicalId\":36437,\"journal\":{\"name\":\"Communications in Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21924/cst.7.1.2022.757\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21924/cst.7.1.2022.757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 5

摘要

本研究的目的是开发一种以蛋壳(Es)和香蕉皮(BP)为增强剂的新型环保刹车片。将E和BP颗粒作为具有不同组成的双增强剂进行组合。然后将E/BP混合物以1:1的比例包埋在构成树脂/硬化剂混合物的聚合物基质上。作为标准,还制造了使用E和BP颗粒的单一增强材料的制动片。研究了物理性能(即粒度、表面粗糙度、形态和密度)以及机械性能(即硬度、磨损率和摩擦系数性能)。据观察,使用双增强件是优选的(与使用单增强件相比),因为它们对制动片的机械性能具有协同作用。在使用具有较高BP比的E/BP颗粒的制动片试样的双增强件中发现了最佳的机械性能,其中刚度试验、穿孔试验、磨损率和摩擦系数的值分别为4.5MPa、86.80、0.093×10-4 g/mm2和1.67×10-4。高的BP颗粒比在双增强体中起着主导作用,提高了树脂的结合能力,使增强体与基体之间具有良好的粘附性。与商用制动片相比,本研究中制造的制动片样品符合标准。技术经济分析还证实了用E和BP颗粒生产制动片的前景(与商业制动片相比)。通过这项研究,预计可以使用环保、低成本的制动片来代替危险的摩擦材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Domestic waste (eggshells and banana peels particles) as sustainable and renewable resources for improving resin-based brakepad performance: Bibliometric literature review, techno-economic analysis, dual-sized reinforcing experiments, to comparison ...
The objective of this study is to develop a new environmentally-friendly brake pad made from eggshells (Es) and banana peels (BPs) as reinforcement agents. E and BP particles as dual reinforcement with various compositions were combined. The E/BP mixture was then embedded on a polymer matrix composing a resin/hardener mixture in a 1:1 ratio. As a standard, brake pads using a single reinforcement of E and BP particles were also fabricated. Physical properties (i.e. particle size, surface roughness, morphology, and density), as well as mechanical properties (i.e. hardness, wear rate, and friction coefficient properties) were investigated. It was observed that using dual reinforcements was preferable (compared to using single reinforcements) because they had a synergistic effect on the mechanical properties of the brake pad. The best mechanical properties were found in dual reinforcements of brake pad specimens using E/BP particles with a higher BP ratio in which the value of the stiffness test, puncture test, wear rate, and coefficient of friction were 4.5 MPa, 86.80, 0.093×10-4 g/s.mm2, and 1.67×10-4, respectively. A high BP particle ratio played a dominant role in dual reinforcements, increasing the resin's bonding ability and resulting in good adhesion between the reinforcement and matrix. When compared to commercial brake pads, the brake pad specimens fabricated in this study met the standards. The techno-economic analysis also confirmed the prospective production of brake pads from E and BP particles (compared to commercial brake pads). From this research, it is expected that environmentally friendly and low-cost brake pads can be used to replace the dangerous friction materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Science and Technology
Communications in Science and Technology Engineering-Engineering (all)
CiteScore
3.20
自引率
0.00%
发文量
13
审稿时长
24 weeks
期刊最新文献
Improving the activity of CO2 capturing from flue gas by membrane gas – solvent absorption process Efficient removal of amoxicillin, ciprofloxacin, and tetracycline from aqueous solution by Cu-Bi2O3 synthesized using precipitation-assisted-microwave Development of CaCO3 novel morphology through crystal lattice modification assisted by sulfate incorporation and vibration The impact of bacillus sp. NTLG2-20 and reduced nitrogen fertilization on soil properties and peanut yield Simulation and optimization of fatty acid extraction parameters from Nannochloropsis sp. using supercritical carbon dioxide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1