用多元调和样条和低阶多项式求解二维和三维非线性椭圆偏微分方程

IF 1.4 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY International Journal of Computational Methods Pub Date : 2023-05-26 DOI:10.1142/s0219876222500517
Kalani Rubasinghe, Guangming Yao, Wen Li, G. Tsogtgerel
{"title":"用多元调和样条和低阶多项式求解二维和三维非线性椭圆偏微分方程","authors":"Kalani Rubasinghe, Guangming Yao, Wen Li, G. Tsogtgerel","doi":"10.1142/s0219876222500517","DOIUrl":null,"url":null,"abstract":"In this paper, the improved localized method of approximated particular solutions (ILMAPS) using polyharmonic splines (PHS) together with a low-degree of polynomial basis is used to approximate solutions of various nonlinear elliptic Partial Differential Equations (PDEs). The method is completely meshfree, and it uses a radial basis function (RBF) that has no shape parameters. The discretization process is done through a simple collocation technique on a set of points in the local domain of influence. Resulted system of nonlinear algebraic equations is solved by the Picard method. The performance of the proposed method is tested on various nonlinear elliptical problems, including the Poisson-type problems in 2D and 3D with constant or variable coefficients on rectangular or irregular domains and the Poisson–Boltzmann equation with Dirichlet boundary conditions or mixed boundary conditions. The effect of domain shapes in 2D and 3D, types of boundary conditions, and degrees of PHS, and order of polynomial basis are examined. The performance of the method is compared with other bases such as multiquadrics (MQ) basis functions, and with results reported in the literature (method of particular solutions using polynomials). The numerical experiments suggest that ILMAPS with polyharmonic splines yields considerably superior accuracy than other RBFs as well as other approaches reported in the literature for solving nonlinear elliptic PDEs.","PeriodicalId":54968,"journal":{"name":"International Journal of Computational Methods","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving Nonlinear Elliptic PDEs in 2D and 3D Using Polyharmonic Splines and Low-Degree of Polynomials\",\"authors\":\"Kalani Rubasinghe, Guangming Yao, Wen Li, G. Tsogtgerel\",\"doi\":\"10.1142/s0219876222500517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the improved localized method of approximated particular solutions (ILMAPS) using polyharmonic splines (PHS) together with a low-degree of polynomial basis is used to approximate solutions of various nonlinear elliptic Partial Differential Equations (PDEs). The method is completely meshfree, and it uses a radial basis function (RBF) that has no shape parameters. The discretization process is done through a simple collocation technique on a set of points in the local domain of influence. Resulted system of nonlinear algebraic equations is solved by the Picard method. The performance of the proposed method is tested on various nonlinear elliptical problems, including the Poisson-type problems in 2D and 3D with constant or variable coefficients on rectangular or irregular domains and the Poisson–Boltzmann equation with Dirichlet boundary conditions or mixed boundary conditions. The effect of domain shapes in 2D and 3D, types of boundary conditions, and degrees of PHS, and order of polynomial basis are examined. The performance of the method is compared with other bases such as multiquadrics (MQ) basis functions, and with results reported in the literature (method of particular solutions using polynomials). The numerical experiments suggest that ILMAPS with polyharmonic splines yields considerably superior accuracy than other RBFs as well as other approaches reported in the literature for solving nonlinear elliptic PDEs.\",\"PeriodicalId\":54968,\"journal\":{\"name\":\"International Journal of Computational Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Methods\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219876222500517\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Methods","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1142/s0219876222500517","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文采用改进的局部逼近特解方法(ILMAPS),利用多调和样条(PHS)和低阶多项式基来逼近各种非线性椭圆偏微分方程(PDE)的解。该方法是完全无网格的,并且使用了没有形状参数的径向基函数。离散化过程是通过在局部影响域中的一组点上使用简单的配置技术来完成的。用Picard方法求解得到的非线性代数方程组。在各种非线性椭圆问题上测试了所提出方法的性能,包括矩形或不规则域上具有常系数或变系数的二维和三维泊松型问题,以及具有Dirichlet边界条件或混合边界条件的泊松-玻尔兹曼方程。研究了二维和三维域形状、边界条件类型、PHS阶数和多项式基阶数的影响。将该方法的性能与其他基(如二次多项式基函数)以及文献中报道的结果(使用多项式的特定解的方法)进行了比较。数值实验表明,与其他RBF以及文献中报道的求解非线性椭圆偏微分方程的其他方法相比,具有多调和样条的ILMAPS产生了相当高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Solving Nonlinear Elliptic PDEs in 2D and 3D Using Polyharmonic Splines and Low-Degree of Polynomials
In this paper, the improved localized method of approximated particular solutions (ILMAPS) using polyharmonic splines (PHS) together with a low-degree of polynomial basis is used to approximate solutions of various nonlinear elliptic Partial Differential Equations (PDEs). The method is completely meshfree, and it uses a radial basis function (RBF) that has no shape parameters. The discretization process is done through a simple collocation technique on a set of points in the local domain of influence. Resulted system of nonlinear algebraic equations is solved by the Picard method. The performance of the proposed method is tested on various nonlinear elliptical problems, including the Poisson-type problems in 2D and 3D with constant or variable coefficients on rectangular or irregular domains and the Poisson–Boltzmann equation with Dirichlet boundary conditions or mixed boundary conditions. The effect of domain shapes in 2D and 3D, types of boundary conditions, and degrees of PHS, and order of polynomial basis are examined. The performance of the method is compared with other bases such as multiquadrics (MQ) basis functions, and with results reported in the literature (method of particular solutions using polynomials). The numerical experiments suggest that ILMAPS with polyharmonic splines yields considerably superior accuracy than other RBFs as well as other approaches reported in the literature for solving nonlinear elliptic PDEs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computational Methods
International Journal of Computational Methods ENGINEERING, MULTIDISCIPLINARY-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
3.30
自引率
17.60%
发文量
84
审稿时长
15 months
期刊介绍: The purpose of this journal is to provide a unique forum for the fast publication and rapid dissemination of original research results and innovative ideas on the state-of-the-art on computational methods. The methods should be innovative and of high scholarly, academic and practical value. The journal is devoted to all aspects of modern computational methods including mathematical formulations and theoretical investigations; interpolations and approximation techniques; error analysis techniques and algorithms; fast algorithms and real-time computation; multi-scale bridging algorithms; adaptive analysis techniques and algorithms; implementation, coding and parallelization issues; novel and practical applications. The articles can involve theory, algorithm, programming, coding, numerical simulation and/or novel application of computational techniques to problems in engineering, science, and other disciplines related to computations. Examples of fields covered by the journal are: Computational mechanics for solids and structures, Computational fluid dynamics, Computational heat transfer, Computational inverse problem, Computational mathematics, Computational meso/micro/nano mechanics, Computational biology, Computational penetration mechanics, Meshfree methods, Particle methods, Molecular and Quantum methods, Advanced Finite element methods, Advanced Finite difference methods, Advanced Finite volume methods, High-performance computing techniques.
期刊最新文献
Sound insulation characteristics of sandwich thin-plate acoustic metamaterial: analysis and optimization Meshless technique based on moving least squares approximation for numerical solutions of linear and nonlinear third-kind VIEs Enhancement of Heat Transfer in the Copper Square Duct with Ribs in the Application of Gas Turbine Blade Cooling Systems: A Hybrid Approach On Cauchy problem solution for a harmonic function in a simply connected domain with multi-component boundary Deflection, stresses and buckling analysis of porous FGM plates with Kerr-type elastic foundations using a new five-unknown trigonometric shear deformation theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1