{"title":"设计节能近似乘数器","authors":"S. Perri, F. Spagnolo, F. Frustaci, P. Corsonello","doi":"10.3390/jlpea12040049","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel approach suitable to design energy-efficient approximate multipliers using both ASIC and FPGAs. The new strategy harnesses specific encoding logics based on bit significance and computes the approximate product performing accurate sub-multiplications by applying an unconventional approach instead of using approximate computational modules implementing traditional static or dynamic bit-truncation approaches. The proposed platform-independent architecture exhibits an energy saving of up to 80% over the accurate counterparts and significantly better behavior in terms of accuracy loss with respect to competitor approximate architectures. When employed in 2D digital filters and edge detectors, the novel approximate multipliers lead to an energy consumption up to ~82% lower than the accurate counterparts, which is up to ~2 times higher than that obtained by state-of-the-art competitors.","PeriodicalId":38100,"journal":{"name":"Journal of Low Power Electronics and Applications","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing Energy-Efficient Approximate Multipliers\",\"authors\":\"S. Perri, F. Spagnolo, F. Frustaci, P. Corsonello\",\"doi\":\"10.3390/jlpea12040049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel approach suitable to design energy-efficient approximate multipliers using both ASIC and FPGAs. The new strategy harnesses specific encoding logics based on bit significance and computes the approximate product performing accurate sub-multiplications by applying an unconventional approach instead of using approximate computational modules implementing traditional static or dynamic bit-truncation approaches. The proposed platform-independent architecture exhibits an energy saving of up to 80% over the accurate counterparts and significantly better behavior in terms of accuracy loss with respect to competitor approximate architectures. When employed in 2D digital filters and edge detectors, the novel approximate multipliers lead to an energy consumption up to ~82% lower than the accurate counterparts, which is up to ~2 times higher than that obtained by state-of-the-art competitors.\",\"PeriodicalId\":38100,\"journal\":{\"name\":\"Journal of Low Power Electronics and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Low Power Electronics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jlpea12040049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Power Electronics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jlpea12040049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
This paper proposes a novel approach suitable to design energy-efficient approximate multipliers using both ASIC and FPGAs. The new strategy harnesses specific encoding logics based on bit significance and computes the approximate product performing accurate sub-multiplications by applying an unconventional approach instead of using approximate computational modules implementing traditional static or dynamic bit-truncation approaches. The proposed platform-independent architecture exhibits an energy saving of up to 80% over the accurate counterparts and significantly better behavior in terms of accuracy loss with respect to competitor approximate architectures. When employed in 2D digital filters and edge detectors, the novel approximate multipliers lead to an energy consumption up to ~82% lower than the accurate counterparts, which is up to ~2 times higher than that obtained by state-of-the-art competitors.