一种基于分段的移动激光扫描点云滤波方法

Xiangguo Lin, W. Xie
{"title":"一种基于分段的移动激光扫描点云滤波方法","authors":"Xiangguo Lin, W. Xie","doi":"10.1080/19479832.2022.2047801","DOIUrl":null,"url":null,"abstract":"ABSTRACT In most Mobile Laser Scanning (MLS) applications, filtering is a necessary step. In this paper, a segmentation-based filtering method is proposed for MLS point cloud, where a segment rather than an individual point is the basic processing unit. In particular, the MLS point clouds in some blocks are clustered into segments by a surface growing algorithm, and then the object segments are detected and removed. A segment-based filtering method is employed to detect the ground segments. The experiment in this paper uses two MLS point cloud datasets to evaluate the proposed method. Experiments indicate that, compared with the classic progressive TIN (Triangulated Irregular Network) densification algorithm, the proposed method is capable of reducing the omission error, the commission error and total error by 3.62%, 7.87% and 5.54% on average, respectively.","PeriodicalId":46012,"journal":{"name":"International Journal of Image and Data Fusion","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A segment-based filtering method for mobile laser scanning point cloud\",\"authors\":\"Xiangguo Lin, W. Xie\",\"doi\":\"10.1080/19479832.2022.2047801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In most Mobile Laser Scanning (MLS) applications, filtering is a necessary step. In this paper, a segmentation-based filtering method is proposed for MLS point cloud, where a segment rather than an individual point is the basic processing unit. In particular, the MLS point clouds in some blocks are clustered into segments by a surface growing algorithm, and then the object segments are detected and removed. A segment-based filtering method is employed to detect the ground segments. The experiment in this paper uses two MLS point cloud datasets to evaluate the proposed method. Experiments indicate that, compared with the classic progressive TIN (Triangulated Irregular Network) densification algorithm, the proposed method is capable of reducing the omission error, the commission error and total error by 3.62%, 7.87% and 5.54% on average, respectively.\",\"PeriodicalId\":46012,\"journal\":{\"name\":\"International Journal of Image and Data Fusion\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Image and Data Fusion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19479832.2022.2047801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Image and Data Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19479832.2022.2047801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 3

摘要

摘要在大多数移动激光扫描(MLS)应用中,滤波是一个必要的步骤。本文针对MLS点云,提出了一种基于分割的滤波方法,其中以分段而非单个点为基本处理单元。特别地,通过表面生长算法将某些块中的MLS点云聚类成片段,然后检测并去除对象片段。采用基于分段的滤波方法来检测地面分段。本文的实验使用了两个MLS点云数据集来评估所提出的方法。实验表明,与经典的渐进式不规则三角网加密算法相比,该方法能够将遗漏误差、委托误差和总误差分别平均降低3.62%、7.87%和5.54%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A segment-based filtering method for mobile laser scanning point cloud
ABSTRACT In most Mobile Laser Scanning (MLS) applications, filtering is a necessary step. In this paper, a segmentation-based filtering method is proposed for MLS point cloud, where a segment rather than an individual point is the basic processing unit. In particular, the MLS point clouds in some blocks are clustered into segments by a surface growing algorithm, and then the object segments are detected and removed. A segment-based filtering method is employed to detect the ground segments. The experiment in this paper uses two MLS point cloud datasets to evaluate the proposed method. Experiments indicate that, compared with the classic progressive TIN (Triangulated Irregular Network) densification algorithm, the proposed method is capable of reducing the omission error, the commission error and total error by 3.62%, 7.87% and 5.54% on average, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
10
期刊介绍: International Journal of Image and Data Fusion provides a single source of information for all aspects of image and data fusion methodologies, developments, techniques and applications. Image and data fusion techniques are important for combining the many sources of satellite, airborne and ground based imaging systems, and integrating these with other related data sets for enhanced information extraction and decision making. Image and data fusion aims at the integration of multi-sensor, multi-temporal, multi-resolution and multi-platform image data, together with geospatial data, GIS, in-situ, and other statistical data sets for improved information extraction, as well as to increase the reliability of the information. This leads to more accurate information that provides for robust operational performance, i.e. increased confidence, reduced ambiguity and improved classification enabling evidence based management. The journal welcomes original research papers, review papers, shorter letters, technical articles, book reviews and conference reports in all areas of image and data fusion including, but not limited to, the following aspects and topics: • Automatic registration/geometric aspects of fusing images with different spatial, spectral, temporal resolutions; phase information; or acquired in different modes • Pixel, feature and decision level fusion algorithms and methodologies • Data Assimilation: fusing data with models • Multi-source classification and information extraction • Integration of satellite, airborne and terrestrial sensor systems • Fusing temporal data sets for change detection studies (e.g. for Land Cover/Land Use Change studies) • Image and data mining from multi-platform, multi-source, multi-scale, multi-temporal data sets (e.g. geometric information, topological information, statistical information, etc.).
期刊最新文献
Transfer learning by VGG-16 with convolutional neural network for paddy leaf disease classification Simplified identification of fire spread risk in building clusters based on digital image processing technology Urban heat island distribution observation by integrating remote sensing technology and deep learning Testing the suitability of v-Support Vector Machine for hyperspectral image classification Assessment of explainable tree-based ensemble algorithms for the enhancement of Copernicus digital elevation model in agricultural lands
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1