{"title":"振荡层流条件下波浪周期对悬移质浓度时间平均分布的影响研究","authors":"Hai-jiang Liu, Zeyu Tan","doi":"10.1080/21664250.2021.2010634","DOIUrl":null,"url":null,"abstract":"ABSTRACT Existing sheet flow experimental data show the measured time-averaged suspended sediment concentration (TSSC) may increase, decrease, or even remain constant if the wave period decreases. With respect to the available sheet flow experimental data, it is confirmed that the TSSC of relatively fine sand undergoes three stages, i.e. first decreases, then increases, and finally decreases again in the case that the wave period decreases from 12 s to 2 s, whereas for the relatively coarse sand, its vertical profile remains almost unchanged. The criterion for identifying the relatively fine or coarse sand was proposed in terms of the nondimensional ratio between the settling velocity and the root-mean-square flow velocity. If this ratio is less than 0.04–0.043, it is deemed as relatively fine sand. Otherwise, it is classified as relatively coarse sand. Applying the classical gradient diffusion model, sediment diffusivity is confirmed to be insensitive to the wave period. Keeping other experimental conditions uniform, TSSCs with different wave periods are proportional to each other and only affected by the reference concentration. Subsequently, a simple quantitative expression considering the wave period effect on the TSSC under the oscillatory sheet flow regime was proposed and verified with the experimental data.","PeriodicalId":50673,"journal":{"name":"Coastal Engineering Journal","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2021-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of the wave period effect on the time-averaged suspended sediment concentration distribution under the oscillatory sheet flow condition\",\"authors\":\"Hai-jiang Liu, Zeyu Tan\",\"doi\":\"10.1080/21664250.2021.2010634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Existing sheet flow experimental data show the measured time-averaged suspended sediment concentration (TSSC) may increase, decrease, or even remain constant if the wave period decreases. With respect to the available sheet flow experimental data, it is confirmed that the TSSC of relatively fine sand undergoes three stages, i.e. first decreases, then increases, and finally decreases again in the case that the wave period decreases from 12 s to 2 s, whereas for the relatively coarse sand, its vertical profile remains almost unchanged. The criterion for identifying the relatively fine or coarse sand was proposed in terms of the nondimensional ratio between the settling velocity and the root-mean-square flow velocity. If this ratio is less than 0.04–0.043, it is deemed as relatively fine sand. Otherwise, it is classified as relatively coarse sand. Applying the classical gradient diffusion model, sediment diffusivity is confirmed to be insensitive to the wave period. Keeping other experimental conditions uniform, TSSCs with different wave periods are proportional to each other and only affected by the reference concentration. Subsequently, a simple quantitative expression considering the wave period effect on the TSSC under the oscillatory sheet flow regime was proposed and verified with the experimental data.\",\"PeriodicalId\":50673,\"journal\":{\"name\":\"Coastal Engineering Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coastal Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/21664250.2021.2010634\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21664250.2021.2010634","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Study of the wave period effect on the time-averaged suspended sediment concentration distribution under the oscillatory sheet flow condition
ABSTRACT Existing sheet flow experimental data show the measured time-averaged suspended sediment concentration (TSSC) may increase, decrease, or even remain constant if the wave period decreases. With respect to the available sheet flow experimental data, it is confirmed that the TSSC of relatively fine sand undergoes three stages, i.e. first decreases, then increases, and finally decreases again in the case that the wave period decreases from 12 s to 2 s, whereas for the relatively coarse sand, its vertical profile remains almost unchanged. The criterion for identifying the relatively fine or coarse sand was proposed in terms of the nondimensional ratio between the settling velocity and the root-mean-square flow velocity. If this ratio is less than 0.04–0.043, it is deemed as relatively fine sand. Otherwise, it is classified as relatively coarse sand. Applying the classical gradient diffusion model, sediment diffusivity is confirmed to be insensitive to the wave period. Keeping other experimental conditions uniform, TSSCs with different wave periods are proportional to each other and only affected by the reference concentration. Subsequently, a simple quantitative expression considering the wave period effect on the TSSC under the oscillatory sheet flow regime was proposed and verified with the experimental data.
期刊介绍:
Coastal Engineering Journal is a peer-reviewed medium for the publication of research achievements and engineering practices in the fields of coastal, harbor and offshore engineering. The CEJ editors welcome original papers and comprehensive reviews on waves and currents, sediment motion and morphodynamics, as well as on structures and facilities. Reports on conceptual developments and predictive methods of environmental processes are also published. Topics also include hard and soft technologies related to coastal zone development, shore protection, and prevention or mitigation of coastal disasters. The journal is intended to cover not only fundamental studies on analytical models, numerical computation and laboratory experiments, but also results of field measurements and case studies of real projects.