{"title":"基于离散时间马尔可夫链(DTMC)模型的LTE/SAE网络可达性降级预测","authors":"H. Hendrawan","doi":"10.5614/ITBJ.ICT.RES.APPL.2019.13.1.1","DOIUrl":null,"url":null,"abstract":"In this paper, an algorithm for predicting accessibility performance on an LTE/SAE network based on relevant historical key performance indicator (KPI) data is proposed. Since there are three KPIs related to accessibility, each representing different segments, a method to map these three KPI values onto the status of accessibility performance is proposed. The network conditions are categorized as high , acceptable or low for each time interval of observation. The first state shows that the system is running optimally, while the second state shows that the system has deteriorated and needs full attention, and the third state indicates that the system has gone into degraded conditions that cannot be tolerated. After the state sequence has been obtained, a transition probability matrix can be derived, which can be used to predict future conditions using a DTMC model. The results obtained are system predictions in terms of probability values for each state for a specific future time. These prediction values are required for proactive health monitoring and fault management. Accessibility degradation prediction is then conducted by using measurement data derived from an eNodeB in the LTE network for a period of one month.","PeriodicalId":42785,"journal":{"name":"Journal of ICT Research and Applications","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Accessibility Degradation Prediction on LTE/SAE Network Using Discrete Time Markov Chain (DTMC) Model\",\"authors\":\"H. Hendrawan\",\"doi\":\"10.5614/ITBJ.ICT.RES.APPL.2019.13.1.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an algorithm for predicting accessibility performance on an LTE/SAE network based on relevant historical key performance indicator (KPI) data is proposed. Since there are three KPIs related to accessibility, each representing different segments, a method to map these three KPI values onto the status of accessibility performance is proposed. The network conditions are categorized as high , acceptable or low for each time interval of observation. The first state shows that the system is running optimally, while the second state shows that the system has deteriorated and needs full attention, and the third state indicates that the system has gone into degraded conditions that cannot be tolerated. After the state sequence has been obtained, a transition probability matrix can be derived, which can be used to predict future conditions using a DTMC model. The results obtained are system predictions in terms of probability values for each state for a specific future time. These prediction values are required for proactive health monitoring and fault management. Accessibility degradation prediction is then conducted by using measurement data derived from an eNodeB in the LTE network for a period of one month.\",\"PeriodicalId\":42785,\"journal\":{\"name\":\"Journal of ICT Research and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of ICT Research and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5614/ITBJ.ICT.RES.APPL.2019.13.1.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ICT Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/ITBJ.ICT.RES.APPL.2019.13.1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Accessibility Degradation Prediction on LTE/SAE Network Using Discrete Time Markov Chain (DTMC) Model
In this paper, an algorithm for predicting accessibility performance on an LTE/SAE network based on relevant historical key performance indicator (KPI) data is proposed. Since there are three KPIs related to accessibility, each representing different segments, a method to map these three KPI values onto the status of accessibility performance is proposed. The network conditions are categorized as high , acceptable or low for each time interval of observation. The first state shows that the system is running optimally, while the second state shows that the system has deteriorated and needs full attention, and the third state indicates that the system has gone into degraded conditions that cannot be tolerated. After the state sequence has been obtained, a transition probability matrix can be derived, which can be used to predict future conditions using a DTMC model. The results obtained are system predictions in terms of probability values for each state for a specific future time. These prediction values are required for proactive health monitoring and fault management. Accessibility degradation prediction is then conducted by using measurement data derived from an eNodeB in the LTE network for a period of one month.
期刊介绍:
Journal of ICT Research and Applications welcomes full research articles in the area of Information and Communication Technology from the following subject areas: Information Theory, Signal Processing, Electronics, Computer Network, Telecommunication, Wireless & Mobile Computing, Internet Technology, Multimedia, Software Engineering, Computer Science, Information System and Knowledge Management. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.