{"title":"(001) MgO晶体硬度的微纳米位错力学","authors":"R. Armstrong, W. Elban","doi":"10.1080/09500839.2021.1973683","DOIUrl":null,"url":null,"abstract":"ABSTRACT\n Micro- to nano-indentation hardness-based stress–strain computations made for Berkovich spherically-tipped impressions put into (001) MgO crystal surfaces show an exceptional plastic strain hardening that is attributed to reacted sessile-type <110> Burgers vector dislocations. Additional evidence for the substantial strain hardening is provided in a compilation of Knoop hardness measurements. The combination of results is compared on the basis of an applied load dependence for an indentation size effect (ISE).","PeriodicalId":19860,"journal":{"name":"Philosophical Magazine Letters","volume":"101 1","pages":"455 - 463"},"PeriodicalIF":1.2000,"publicationDate":"2021-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The micro- to nano-scale dislocation mechanics of (001) MgO crystal hardness\",\"authors\":\"R. Armstrong, W. Elban\",\"doi\":\"10.1080/09500839.2021.1973683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT\\n Micro- to nano-indentation hardness-based stress–strain computations made for Berkovich spherically-tipped impressions put into (001) MgO crystal surfaces show an exceptional plastic strain hardening that is attributed to reacted sessile-type <110> Burgers vector dislocations. Additional evidence for the substantial strain hardening is provided in a compilation of Knoop hardness measurements. The combination of results is compared on the basis of an applied load dependence for an indentation size effect (ISE).\",\"PeriodicalId\":19860,\"journal\":{\"name\":\"Philosophical Magazine Letters\",\"volume\":\"101 1\",\"pages\":\"455 - 463\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Magazine Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/09500839.2021.1973683\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Magazine Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09500839.2021.1973683","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
The micro- to nano-scale dislocation mechanics of (001) MgO crystal hardness
ABSTRACT
Micro- to nano-indentation hardness-based stress–strain computations made for Berkovich spherically-tipped impressions put into (001) MgO crystal surfaces show an exceptional plastic strain hardening that is attributed to reacted sessile-type <110> Burgers vector dislocations. Additional evidence for the substantial strain hardening is provided in a compilation of Knoop hardness measurements. The combination of results is compared on the basis of an applied load dependence for an indentation size effect (ISE).
期刊介绍:
Philosophical Magazine Letters is the rapid communications part of the highly respected Philosophical Magazine, which was first published in 1798. Its Editors consider for publication short and timely contributions in the field of condensed matter describing original results, theories and concepts relating to the structure and properties of crystalline materials, ceramics, polymers, glasses, amorphous films, composites and soft matter. Articles emphasizing experimental, theoretical and modelling studies on solids, especially those that interpret behaviour on a microscopic, atomic or electronic scale, are particularly appropriate.
Manuscripts are considered on the strict condition that they have been submitted only to Philosophical Magazine Letters , that they have not been published already, and that they are not under consideration for publication elsewhere.