经典二维哈密顿系统的量子化

I. Belyaeva
{"title":"经典二维哈密顿系统的量子化","authors":"I. Belyaeva","doi":"10.22363/2658-4670-2022-30-1-39-51","DOIUrl":null,"url":null,"abstract":"The paper considers the class of Hamiltonian systems with two degrees of freedom. Based on the classical normal form, according to the rules of Born-Jordan and Weyl-MacCoy, its quantum analogs are constructed for which the eigenvalue problem is solved and approximate formulas for the energy spectrum are found. For particular values of the parameters of quantum normal forms using these formulas, numerical calculations of the lower energy levels were performed, and the obtained results were compared with the known data of other authors. It was found that the best and good agreement with the known results is obtained using the Weyl-MacCoy quantization rule. The procedure for normalizing the classical Hamilton function is an extremely time-consuming task, since it involves hundreds and even thousands of polynomials for the necessary transformations. Therefore, in the work, normalization is performed using the REDUCE computer algebra system. It is shown that the use of the Weyl-MacCoy and Born-Jordan correspondence rules leads to almost the same values for the energy spectrum, while their proximity increases for large quantities of quantum numbers, that is, for highly excited states. The canonical transformation is used in the work, the quantum analog of which allows us to construct eigenfunctions for the quantum normal form and thus obtain analytical formulas for the energy spectra of different Hamiltonian systems. So, it is shown that quantization of classical Hamiltonian systems, including those admitting the classical mode of motion, using the method of normal forms gives a very accurate prediction of energy levels.","PeriodicalId":34192,"journal":{"name":"Discrete and Continuous Models and Applied Computational Science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The quantization of the classical two-dimensional Hamiltonian systems\",\"authors\":\"I. Belyaeva\",\"doi\":\"10.22363/2658-4670-2022-30-1-39-51\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper considers the class of Hamiltonian systems with two degrees of freedom. Based on the classical normal form, according to the rules of Born-Jordan and Weyl-MacCoy, its quantum analogs are constructed for which the eigenvalue problem is solved and approximate formulas for the energy spectrum are found. For particular values of the parameters of quantum normal forms using these formulas, numerical calculations of the lower energy levels were performed, and the obtained results were compared with the known data of other authors. It was found that the best and good agreement with the known results is obtained using the Weyl-MacCoy quantization rule. The procedure for normalizing the classical Hamilton function is an extremely time-consuming task, since it involves hundreds and even thousands of polynomials for the necessary transformations. Therefore, in the work, normalization is performed using the REDUCE computer algebra system. It is shown that the use of the Weyl-MacCoy and Born-Jordan correspondence rules leads to almost the same values for the energy spectrum, while their proximity increases for large quantities of quantum numbers, that is, for highly excited states. The canonical transformation is used in the work, the quantum analog of which allows us to construct eigenfunctions for the quantum normal form and thus obtain analytical formulas for the energy spectra of different Hamiltonian systems. So, it is shown that quantization of classical Hamiltonian systems, including those admitting the classical mode of motion, using the method of normal forms gives a very accurate prediction of energy levels.\",\"PeriodicalId\":34192,\"journal\":{\"name\":\"Discrete and Continuous Models and Applied Computational Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete and Continuous Models and Applied Computational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22363/2658-4670-2022-30-1-39-51\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Continuous Models and Applied Computational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22363/2658-4670-2022-30-1-39-51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类具有两个自由度的哈密顿系统。在经典范式的基础上,根据Born-Jordan和Weyl-MacCoy的规则,构造了其量子类似物,求解了其特征值问题,并找到了能谱的近似公式。对于使用这些公式的量子正态参数的特定值,进行了较低能级的数值计算,并将所得结果与其他作者的已知数据进行了比较。发现使用Weyl-MacCoy量化规则获得了与已知结果的最佳且良好的一致性。标准化经典Hamilton函数的过程是一项极其耗时的任务,因为它涉及数百甚至数千个必要变换的多项式。因此,在工作中,使用REDUCE计算机代数系统进行归一化。研究表明,使用Weyl-MacCoy和Born-Jordan对应规则会导致能谱的值几乎相同,而对于大量量子数,即高激发态,它们的接近度会增加。工作中使用了正则变换,其量子模拟使我们能够构造量子范式的本征函数,从而获得不同哈密顿系统能谱的解析公式。因此,证明了经典哈密顿系统的量子化,包括那些采用经典运动模式的系统,使用正规形式的方法,可以非常准确地预测能级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The quantization of the classical two-dimensional Hamiltonian systems
The paper considers the class of Hamiltonian systems with two degrees of freedom. Based on the classical normal form, according to the rules of Born-Jordan and Weyl-MacCoy, its quantum analogs are constructed for which the eigenvalue problem is solved and approximate formulas for the energy spectrum are found. For particular values of the parameters of quantum normal forms using these formulas, numerical calculations of the lower energy levels were performed, and the obtained results were compared with the known data of other authors. It was found that the best and good agreement with the known results is obtained using the Weyl-MacCoy quantization rule. The procedure for normalizing the classical Hamilton function is an extremely time-consuming task, since it involves hundreds and even thousands of polynomials for the necessary transformations. Therefore, in the work, normalization is performed using the REDUCE computer algebra system. It is shown that the use of the Weyl-MacCoy and Born-Jordan correspondence rules leads to almost the same values for the energy spectrum, while their proximity increases for large quantities of quantum numbers, that is, for highly excited states. The canonical transformation is used in the work, the quantum analog of which allows us to construct eigenfunctions for the quantum normal form and thus obtain analytical formulas for the energy spectra of different Hamiltonian systems. So, it is shown that quantization of classical Hamiltonian systems, including those admitting the classical mode of motion, using the method of normal forms gives a very accurate prediction of energy levels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
20
审稿时长
10 weeks
期刊最新文献
Asymptote-based scientific animation Brain-computer interaction modeling based on the stable diffusion model Hodge-de Rham Laplacian and geometric criteria for gravitational waves On a stable calculation of the normal to a surface given approximately Numerical integration of the Cauchy problem with non-singular special points
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1