使用动态和稳态数据的气相聚乙烯产品性能建模和参数估计

IF 1.8 4区 工程技术 Q3 ENGINEERING, CHEMICAL Macromolecular Reaction Engineering Pub Date : 2023-01-15 DOI:10.1002/mren.202200067
Lauren A. Gibson, Yan Jiang, Timothy Boller, Hsu Chiang, Kimberley B. McAuley
{"title":"使用动态和稳态数据的气相聚乙烯产品性能建模和参数估计","authors":"Lauren A. Gibson,&nbsp;Yan Jiang,&nbsp;Timothy Boller,&nbsp;Hsu Chiang,&nbsp;Kimberley B. McAuley","doi":"10.1002/mren.202200067","DOIUrl":null,"url":null,"abstract":"<p>Models are developed for gas-phase ethylene/1-hexene copolymerization using a 3-site hafnocene catalyst. The models accurately predict joint molecular weight distribution and copolymer composition data for 15 semibatch lab-scale copolymerization runs and 6 steady-state pilot-plant copolymerization runs, respectively. Kinetic rate constants and activation energies, which are common to both models, are estimated for the three types of active sites for each reaction in the kinetic scheme. Using parameter subset selection and estimation techniques, it is found that 34 of the 61 parameters should be estimated from the data. Incorporating the pilot-plant data allow for estimation of two parameters, a deactivation rate constant and a <i>β</i>-hydride elimination activation energy, that are not estimable using the lab-scale data alone. At the 95% confidence level, 25 of the 34 parameters are significantly different than zero, which is more than the 19 significant parameter estimates obtained from the lab-scale data alone. Good fits to the data are obtained, as are reliable predictions for a validation run not used in parameter estimation.</p>","PeriodicalId":18052,"journal":{"name":"Macromolecular Reaction Engineering","volume":"17 2","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling and Parameter Estimation for Gas-Phase Polyethylene Product Properties Using Dynamic and Steady-State Data\",\"authors\":\"Lauren A. Gibson,&nbsp;Yan Jiang,&nbsp;Timothy Boller,&nbsp;Hsu Chiang,&nbsp;Kimberley B. McAuley\",\"doi\":\"10.1002/mren.202200067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Models are developed for gas-phase ethylene/1-hexene copolymerization using a 3-site hafnocene catalyst. The models accurately predict joint molecular weight distribution and copolymer composition data for 15 semibatch lab-scale copolymerization runs and 6 steady-state pilot-plant copolymerization runs, respectively. Kinetic rate constants and activation energies, which are common to both models, are estimated for the three types of active sites for each reaction in the kinetic scheme. Using parameter subset selection and estimation techniques, it is found that 34 of the 61 parameters should be estimated from the data. Incorporating the pilot-plant data allow for estimation of two parameters, a deactivation rate constant and a <i>β</i>-hydride elimination activation energy, that are not estimable using the lab-scale data alone. At the 95% confidence level, 25 of the 34 parameters are significantly different than zero, which is more than the 19 significant parameter estimates obtained from the lab-scale data alone. Good fits to the data are obtained, as are reliable predictions for a validation run not used in parameter estimation.</p>\",\"PeriodicalId\":18052,\"journal\":{\"name\":\"Macromolecular Reaction Engineering\",\"volume\":\"17 2\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Reaction Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mren.202200067\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Reaction Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mren.202200067","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

模型开发气相乙烯/1-己烯共聚使用3位半烯催化剂。这些模型分别准确预测了15个半批量实验室规模共聚运行和6个稳态中试共聚运行的关节分子量分布和共聚物组成数据。对动力学方案中每种反应的三种活性位点的动力学速率常数和活化能进行了估计,这是两种模型共有的。使用参数子集选择和估计技术,发现61个参数中有34个需要从数据中估计。结合中试工厂的数据,可以估计两个参数,失活速率常数和β-氢化物消除活化能,这是无法单独使用实验室规模数据估计的。在95%置信水平下,34个参数中有25个显著不同于零,这比单独从实验室规模数据中获得的19个显著参数估计值要多。获得了与数据的良好拟合,并且对未用于参数估计的验证运行进行了可靠的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling and Parameter Estimation for Gas-Phase Polyethylene Product Properties Using Dynamic and Steady-State Data

Models are developed for gas-phase ethylene/1-hexene copolymerization using a 3-site hafnocene catalyst. The models accurately predict joint molecular weight distribution and copolymer composition data for 15 semibatch lab-scale copolymerization runs and 6 steady-state pilot-plant copolymerization runs, respectively. Kinetic rate constants and activation energies, which are common to both models, are estimated for the three types of active sites for each reaction in the kinetic scheme. Using parameter subset selection and estimation techniques, it is found that 34 of the 61 parameters should be estimated from the data. Incorporating the pilot-plant data allow for estimation of two parameters, a deactivation rate constant and a β-hydride elimination activation energy, that are not estimable using the lab-scale data alone. At the 95% confidence level, 25 of the 34 parameters are significantly different than zero, which is more than the 19 significant parameter estimates obtained from the lab-scale data alone. Good fits to the data are obtained, as are reliable predictions for a validation run not used in parameter estimation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecular Reaction Engineering
Macromolecular Reaction Engineering 工程技术-高分子科学
CiteScore
2.60
自引率
20.00%
发文量
55
审稿时长
3 months
期刊介绍: Macromolecular Reaction Engineering is the established high-quality journal dedicated exclusively to academic and industrial research in the field of polymer reaction engineering.
期刊最新文献
Front Cover: Macromol. React. Eng. 6/2024 Masthead: Macromol. React. Eng. 6/2024 Front Cover: Macromol. React. Eng. 5/2024 Masthead: Macromol. React. Eng. 5/2024 Poly(butylene succinate) Microparticles Prepared Through Green Suspension Polycondensations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1