平菇生物量和次生代谢产物生产的优化。生物反应器中亚培养和补料分批培养不定根的方法

Q3 Agricultural and Biological Sciences HAYATI Journal of Biosciences Pub Date : 2023-05-30 DOI:10.4308/hjb.30.5.797-807
D. Y. Kusuma, A. Kristanti, A. T. Wibowo, B. Tan, Yosephine Sri, W. Manuhara
{"title":"平菇生物量和次生代谢产物生产的优化。生物反应器中亚培养和补料分批培养不定根的方法","authors":"D. Y. Kusuma, A. Kristanti, A. T. Wibowo, B. Tan, Yosephine Sri, W. Manuhara","doi":"10.4308/hjb.30.5.797-807","DOIUrl":null,"url":null,"abstract":"The valuable extract of bioactive compounds from Gynura procumbens has been widely manufactured into various health products. The demand for these compounds is continuously increasing, but production through conventional farming methods is insufficient due to limited agricultural land and environmental stresses. An alternative to producing plant biomass is in vitro cultivation methods. This method requires less space and enables biomass propagation in a controlled condition that can facilitate stable and efficient production of plant secondary metabolites. This study evaluated the effect of inoculum subculture periods and culture methods on G. procumbens biomass and secondary metabolite production in a bioreactor. The 3-L airlift balloon type-bubble bioreactors was modified in this study to adopt the treatment of 1st-5th subculture periods and fed- and batch-cultivation strategies. We found the G. procumbens adventitious root culture was optimally derived from the 1st subculture produced biomass of 148.02±1.45 g FW and 8.59±0.12 g DW, and TPC (14.48±1.08 mg GAE/g DW) and TFC (116.89±0.44 mg KE/g DW and 33.97±0.13 mg QE/g DW). Additionally, the fed method after 28 days of culture using double distilled water replenishment improved adventitious root biomass (213.75±35.00 g FW and 11.21±0.18 g DW), while nutrient replenishment improved TFC (52.14±0.44 mg KE/g DW and 14.54±0.13 mg QE/g DW). These results can be used to optimize the cultivation of G. procumbens adventitious roots in a large-scale bioreactor.","PeriodicalId":12927,"journal":{"name":"HAYATI Journal of Biosciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimization of Biomass and Secondary Metabolite Production in Gynura procumbens (Lour.) Merr. Adventitious Roots Culture by Using the Method of Subculture and Fed-batch Cultivation in a Bioreactor\",\"authors\":\"D. Y. Kusuma, A. Kristanti, A. T. Wibowo, B. Tan, Yosephine Sri, W. Manuhara\",\"doi\":\"10.4308/hjb.30.5.797-807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The valuable extract of bioactive compounds from Gynura procumbens has been widely manufactured into various health products. The demand for these compounds is continuously increasing, but production through conventional farming methods is insufficient due to limited agricultural land and environmental stresses. An alternative to producing plant biomass is in vitro cultivation methods. This method requires less space and enables biomass propagation in a controlled condition that can facilitate stable and efficient production of plant secondary metabolites. This study evaluated the effect of inoculum subculture periods and culture methods on G. procumbens biomass and secondary metabolite production in a bioreactor. The 3-L airlift balloon type-bubble bioreactors was modified in this study to adopt the treatment of 1st-5th subculture periods and fed- and batch-cultivation strategies. We found the G. procumbens adventitious root culture was optimally derived from the 1st subculture produced biomass of 148.02±1.45 g FW and 8.59±0.12 g DW, and TPC (14.48±1.08 mg GAE/g DW) and TFC (116.89±0.44 mg KE/g DW and 33.97±0.13 mg QE/g DW). Additionally, the fed method after 28 days of culture using double distilled water replenishment improved adventitious root biomass (213.75±35.00 g FW and 11.21±0.18 g DW), while nutrient replenishment improved TFC (52.14±0.44 mg KE/g DW and 14.54±0.13 mg QE/g DW). These results can be used to optimize the cultivation of G. procumbens adventitious roots in a large-scale bioreactor.\",\"PeriodicalId\":12927,\"journal\":{\"name\":\"HAYATI Journal of Biosciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HAYATI Journal of Biosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4308/hjb.30.5.797-807\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HAYATI Journal of Biosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4308/hjb.30.5.797-807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 1

摘要

从猪苓中提取的有价值的生物活性化合物已被广泛生产成各种保健品。对这些化合物的需求不断增加,但由于农业用地有限和环境压力,传统耕作方法的生产不足。生产植物生物质的一种替代方法是体外培养方法。这种方法需要更少的空间,并且能够在可控的条件下繁殖生物质,从而促进植物次生代谢产物的稳定高效生产。本研究评估了接种物继代培养时间和培养方法对生物反应器中平菇生物量和次级代谢产物产生的影响。本研究对3-L气升气球型气泡生物反应器进行了改进,采用第1-5次传代处理和补料和分批培养策略。我们发现,平菇不定根培养的最佳来源于第一次继代产生的生物量为148.02±1.45 G FW和8.59±0.12 G DW,以及TPC(14.48±1.08 mg GAE/G DW)和TFC(116.89±0.44 mg KE/G DW和33.97±0.13 mg QE/G DW)。此外,在使用双蒸馏水补充培养28天后,补饲法提高了不定根生物量(213.75±35.00 g FW和11.21±0.18 g DW),而营养补充提高了TFC(52.14±0.44 mg KE/g DW和14.54±0.13 mg QE/g DW)。这些结果可用于优化在大型生物反应器中培养平菇不定根。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of Biomass and Secondary Metabolite Production in Gynura procumbens (Lour.) Merr. Adventitious Roots Culture by Using the Method of Subculture and Fed-batch Cultivation in a Bioreactor
The valuable extract of bioactive compounds from Gynura procumbens has been widely manufactured into various health products. The demand for these compounds is continuously increasing, but production through conventional farming methods is insufficient due to limited agricultural land and environmental stresses. An alternative to producing plant biomass is in vitro cultivation methods. This method requires less space and enables biomass propagation in a controlled condition that can facilitate stable and efficient production of plant secondary metabolites. This study evaluated the effect of inoculum subculture periods and culture methods on G. procumbens biomass and secondary metabolite production in a bioreactor. The 3-L airlift balloon type-bubble bioreactors was modified in this study to adopt the treatment of 1st-5th subculture periods and fed- and batch-cultivation strategies. We found the G. procumbens adventitious root culture was optimally derived from the 1st subculture produced biomass of 148.02±1.45 g FW and 8.59±0.12 g DW, and TPC (14.48±1.08 mg GAE/g DW) and TFC (116.89±0.44 mg KE/g DW and 33.97±0.13 mg QE/g DW). Additionally, the fed method after 28 days of culture using double distilled water replenishment improved adventitious root biomass (213.75±35.00 g FW and 11.21±0.18 g DW), while nutrient replenishment improved TFC (52.14±0.44 mg KE/g DW and 14.54±0.13 mg QE/g DW). These results can be used to optimize the cultivation of G. procumbens adventitious roots in a large-scale bioreactor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
HAYATI Journal of Biosciences
HAYATI Journal of Biosciences Agricultural and Biological Sciences-Agricultural and Biological Sciences (all)
CiteScore
1.10
自引率
0.00%
发文量
75
审稿时长
24 weeks
期刊介绍: HAYATI Journal of Biosciences (HAYATI J Biosci) is an international peer-reviewed and open access journal that publishes significant and important research from all area of biosciences fields such as biodiversity, biosystematics, ecology, physiology, behavior, genetics and biotechnology. All life forms, ranging from microbes, fungi, plants, animals, and human, including virus, are covered by HAYATI J Biosci. HAYATI J Biosci published by Department of Biology, Bogor Agricultural University, Indonesia and the Indonesian Society for Biology. We accept submission from all over the world. Our Editorial Board members are prominent and active international researchers in biosciences fields who ensure efficient, fair, and constructive peer-review process. All accepted articles will be published on payment of an article-processing charge, and will be freely available to all readers with worldwide visibility and coverage.
期刊最新文献
Expression of Immunoglobulin M (IgM) and Immunoglobulin G (IgG) in Normal Wistar Rat Post-Cheral® Administration Genetic Relationship and the Putative Occurrence of A Species Complex Within the Indonesian Calotes (Daudin, 1802) (Squamata, Agamidae) Genus Based on COI Gene Sequences In Silico Study, Design, and Expression of an Intranasal Dual Chimeric Vaccine for Indonesian-Based Norovirus GII-2 and Hepatitis B Potential of Clitoria ternatea L. Extract Towards Insulin Receptor Expression and Marker of Inflammation in Diabetes Mellitus Rats Model Genomics and Phylogeny of Rhodotorula glutinis and Rhodotorula kratochvilovae Isolated from the Northern Peruvian Andes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1