{"title":"吉布斯和迪昂的热力学方法对化学热力学发展的影响","authors":"Photis Dais","doi":"10.1007/s00407-020-00259-8","DOIUrl":null,"url":null,"abstract":"<div><p>From 1873 to 1878, the American physicist Josiah Willard Gibbs offered to the scientific community three great articles that proved to be a milestone for the science of thermodynamics. On the other hand, between 1886 and 1896, the French physicist Pierre Maurice Marie Duhem translated thermodynamics into the language of Lagrange’s analytical mechanics. At the same time, he expanded its scope to include thermal phenomena, electromagnetic phenomena, and all kinds of irreversible processes. Duhem formulated a version of thermodynamics characterized by the conceptual unification of mechanics, physics, and chemistry. Overall, the work of both physicists on thermodynamics is tremendous, full of axioms, theorems, corollaries, proofs, and hundreds of equations. Therefore, it would be a utopian aim to provide a short analysis of their work. Instead, the present study will attempt to give a brief outline of the main tools and concepts used by the two physicists. I will argue that each scientist approaches thermodynamics in a new and unique way, which reveals their scientific styles as reflected in their personalities, the writing styles, their behavior toward publicity, and their inclination for publication. Finally, I will examine the influence of their theories on the development of chemical thermodynamics.</p></div>","PeriodicalId":50982,"journal":{"name":"Archive for History of Exact Sciences","volume":"75 2","pages":"175 - 248"},"PeriodicalIF":0.7000,"publicationDate":"2020-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00407-020-00259-8","citationCount":"1","resultStr":"{\"title\":\"Impact of Gibbs’ and Duhem’s approaches to thermodynamics on the development of chemical thermodynamics\",\"authors\":\"Photis Dais\",\"doi\":\"10.1007/s00407-020-00259-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>From 1873 to 1878, the American physicist Josiah Willard Gibbs offered to the scientific community three great articles that proved to be a milestone for the science of thermodynamics. On the other hand, between 1886 and 1896, the French physicist Pierre Maurice Marie Duhem translated thermodynamics into the language of Lagrange’s analytical mechanics. At the same time, he expanded its scope to include thermal phenomena, electromagnetic phenomena, and all kinds of irreversible processes. Duhem formulated a version of thermodynamics characterized by the conceptual unification of mechanics, physics, and chemistry. Overall, the work of both physicists on thermodynamics is tremendous, full of axioms, theorems, corollaries, proofs, and hundreds of equations. Therefore, it would be a utopian aim to provide a short analysis of their work. Instead, the present study will attempt to give a brief outline of the main tools and concepts used by the two physicists. I will argue that each scientist approaches thermodynamics in a new and unique way, which reveals their scientific styles as reflected in their personalities, the writing styles, their behavior toward publicity, and their inclination for publication. Finally, I will examine the influence of their theories on the development of chemical thermodynamics.</p></div>\",\"PeriodicalId\":50982,\"journal\":{\"name\":\"Archive for History of Exact Sciences\",\"volume\":\"75 2\",\"pages\":\"175 - 248\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s00407-020-00259-8\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for History of Exact Sciences\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00407-020-00259-8\",\"RegionNum\":2,\"RegionCategory\":\"哲学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HISTORY & PHILOSOPHY OF SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for History of Exact Sciences","FirstCategoryId":"98","ListUrlMain":"https://link.springer.com/article/10.1007/s00407-020-00259-8","RegionNum":2,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HISTORY & PHILOSOPHY OF SCIENCE","Score":null,"Total":0}
Impact of Gibbs’ and Duhem’s approaches to thermodynamics on the development of chemical thermodynamics
From 1873 to 1878, the American physicist Josiah Willard Gibbs offered to the scientific community three great articles that proved to be a milestone for the science of thermodynamics. On the other hand, between 1886 and 1896, the French physicist Pierre Maurice Marie Duhem translated thermodynamics into the language of Lagrange’s analytical mechanics. At the same time, he expanded its scope to include thermal phenomena, electromagnetic phenomena, and all kinds of irreversible processes. Duhem formulated a version of thermodynamics characterized by the conceptual unification of mechanics, physics, and chemistry. Overall, the work of both physicists on thermodynamics is tremendous, full of axioms, theorems, corollaries, proofs, and hundreds of equations. Therefore, it would be a utopian aim to provide a short analysis of their work. Instead, the present study will attempt to give a brief outline of the main tools and concepts used by the two physicists. I will argue that each scientist approaches thermodynamics in a new and unique way, which reveals their scientific styles as reflected in their personalities, the writing styles, their behavior toward publicity, and their inclination for publication. Finally, I will examine the influence of their theories on the development of chemical thermodynamics.
期刊介绍:
The Archive for History of Exact Sciences casts light upon the conceptual groundwork of the sciences by analyzing the historical course of rigorous quantitative thought and the precise theory of nature in the fields of mathematics, physics, technical chemistry, computer science, astronomy, and the biological sciences, embracing as well their connections to experiment. This journal nourishes historical research meeting the standards of the mathematical sciences. Its aim is to give rapid and full publication to writings of exceptional depth, scope, and permanence.