可见光-近红外范围纺织品分选用高光谱成像技术

Q3 Chemistry Journal of Spectral Imaging Pub Date : 2019-10-02 DOI:10.1255/jsi.2019.a17
Carolina Blanch-Perez-del-Notario, W. Saeys, A. Lambrechts
{"title":"可见光-近红外范围纺织品分选用高光谱成像技术","authors":"Carolina Blanch-Perez-del-Notario, W. Saeys, A. Lambrechts","doi":"10.1255/jsi.2019.a17","DOIUrl":null,"url":null,"abstract":"Recycling of textile materials is becoming important due to the increasing amount of textile waste and its large\nenvironmental impact. The Resyntex project aims at dealing with this textile waste by enabling its chemical recycling. To do\n so, pure textile materials and blends need to be sorted first. In this paper we evaluate the suitability of hyperspectral\nimaging for pure and blend textile sorting. We also test the discrimination capacity between denim and non-denim textile,\nsince this is required prior to the de-colouration processes. For this purpose, we use a line-scan sensor in the 450–950\nnm range, since its cost, compactness and speed characteristics make it suitable for industrial deployment. To deal with\nthe strong colour interference of the textile a hierarchical classification approach is proposed. The results on the available\nsample set show promising discrimination potential for material discrimination as well as for denim versus non-denim\ndetection.","PeriodicalId":37385,"journal":{"name":"Journal of Spectral Imaging","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Hyperspectral imaging for textile sorting in the visible–near infrared range\",\"authors\":\"Carolina Blanch-Perez-del-Notario, W. Saeys, A. Lambrechts\",\"doi\":\"10.1255/jsi.2019.a17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recycling of textile materials is becoming important due to the increasing amount of textile waste and its large\\nenvironmental impact. The Resyntex project aims at dealing with this textile waste by enabling its chemical recycling. To do\\n so, pure textile materials and blends need to be sorted first. In this paper we evaluate the suitability of hyperspectral\\nimaging for pure and blend textile sorting. We also test the discrimination capacity between denim and non-denim textile,\\nsince this is required prior to the de-colouration processes. For this purpose, we use a line-scan sensor in the 450–950\\nnm range, since its cost, compactness and speed characteristics make it suitable for industrial deployment. To deal with\\nthe strong colour interference of the textile a hierarchical classification approach is proposed. The results on the available\\nsample set show promising discrimination potential for material discrimination as well as for denim versus non-denim\\ndetection.\",\"PeriodicalId\":37385,\"journal\":{\"name\":\"Journal of Spectral Imaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Spectral Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1255/jsi.2019.a17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spectral Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1255/jsi.2019.a17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 18

摘要

由于纺织废料的数量不断增加及其对环境的巨大影响,纺织材料的回收利用变得越来越重要。Resyntex项目旨在通过使其化学回收来处理这些纺织废料。要做到这一点,首先需要对纯纺织材料和混纺物进行分类。本文评价了高光谱成像技术在纯纺和混纺织物分选中的适用性。我们还测试了牛仔布和非牛仔布纺织品之间的辨别能力,因为这是在脱色过程之前需要的。为此,我们使用450-950nm范围内的线扫描传感器,因为其成本,紧凑性和速度特性使其适合工业部署。针对纺织品的强烈色彩干扰,提出了一种分层分类方法。在可用样本集上的结果显示了有希望的材料歧视以及牛仔布与非牛仔布检测的歧视潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hyperspectral imaging for textile sorting in the visible–near infrared range
Recycling of textile materials is becoming important due to the increasing amount of textile waste and its large environmental impact. The Resyntex project aims at dealing with this textile waste by enabling its chemical recycling. To do so, pure textile materials and blends need to be sorted first. In this paper we evaluate the suitability of hyperspectral imaging for pure and blend textile sorting. We also test the discrimination capacity between denim and non-denim textile, since this is required prior to the de-colouration processes. For this purpose, we use a line-scan sensor in the 450–950 nm range, since its cost, compactness and speed characteristics make it suitable for industrial deployment. To deal with the strong colour interference of the textile a hierarchical classification approach is proposed. The results on the available sample set show promising discrimination potential for material discrimination as well as for denim versus non-denim detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Spectral Imaging
Journal of Spectral Imaging Chemistry-Analytical Chemistry
CiteScore
3.90
自引率
0.00%
发文量
11
审稿时长
22 weeks
期刊介绍: JSI—Journal of Spectral Imaging is the first journal to bring together current research from the diverse research areas of spectral, hyperspectral and chemical imaging as well as related areas such as remote sensing, chemometrics, data mining and data handling for spectral image data. We believe all those working in Spectral Imaging can benefit from the knowledge of others even in widely different fields. We welcome original research papers, letters, review articles, tutorial papers, short communications and technical notes.
期刊最新文献
Estimation of pigment concentration in LDPE via in-line hyperspectral imaging and machine learning The hybrid approach—convolutional neural networks and expectation maximisation algorithm—for tomographic reconstruction of hyperspectral images Comparison of 2D and 3D semantic segmentation in urban areas using fused hyperspectral and lidar data Comparison of different illumination systems for moisture prediction in cereal bars using hyperspectral imaging technology Reflectance spectra and AVIRIS-NG airborne hyperspectral data analysis for mapping ultramafic rocks in igneous terrain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1