Wenjun Li, Tong Yang, Ori Rottenstreich, Xianfeng Li, Gaogang Xie, Hui Li, Balajee Vamanan, Dagang Li, Huiping Lin
{"title":"具有高搜索和更新性能的元组空间辅助分组分类","authors":"Wenjun Li, Tong Yang, Ori Rottenstreich, Xianfeng Li, Gaogang Xie, Hui Li, Balajee Vamanan, Dagang Li, Huiping Lin","doi":"10.1109/JSAC.2020.2986935","DOIUrl":null,"url":null,"abstract":"Software switches are being deployed in SDN to enable a wide spectrum of non-traditional applications. The popular Open vSwitch uses a variant of Tuple Space Search (TSS) for packet classifications. Although it has good performance on rule updates, it is less efficient than decision trees on lookups. In this paper, we propose a two-stage framework consisting of heterogeneous algorithms to adaptively exploit different characteristics of the rule sets at different scales. In the first stage, partial decision trees are constructed from several rule subsets grouped with respect to their small fields. This grouping eliminates rule replications at large scales, thereby enabling very efficient pre-cuttings. The second stage handles packet classification at small scales for non-leaf terminal nodes, where rule replications within each subspace may lead to inefficient cuttings. A salient fact is that small space means long address prefixes or less nesting levels of ranges, both indicating a very limited tuple space. To exploit this favorable property, we employ a TSS-based algorithm for these subsets following tree constructions. Experimental results show that our work has comparable update performance to TSS in Open vSwitch, while achieving almost an order-of-magnitude improvement on classification performance over TSS.","PeriodicalId":13243,"journal":{"name":"IEEE Journal on Selected Areas in Communications","volume":"38 1","pages":"1555-1569"},"PeriodicalIF":13.8000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/JSAC.2020.2986935","citationCount":"18","resultStr":"{\"title\":\"Tuple Space Assisted Packet Classification With High Performance on Both Search and Update\",\"authors\":\"Wenjun Li, Tong Yang, Ori Rottenstreich, Xianfeng Li, Gaogang Xie, Hui Li, Balajee Vamanan, Dagang Li, Huiping Lin\",\"doi\":\"10.1109/JSAC.2020.2986935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software switches are being deployed in SDN to enable a wide spectrum of non-traditional applications. The popular Open vSwitch uses a variant of Tuple Space Search (TSS) for packet classifications. Although it has good performance on rule updates, it is less efficient than decision trees on lookups. In this paper, we propose a two-stage framework consisting of heterogeneous algorithms to adaptively exploit different characteristics of the rule sets at different scales. In the first stage, partial decision trees are constructed from several rule subsets grouped with respect to their small fields. This grouping eliminates rule replications at large scales, thereby enabling very efficient pre-cuttings. The second stage handles packet classification at small scales for non-leaf terminal nodes, where rule replications within each subspace may lead to inefficient cuttings. A salient fact is that small space means long address prefixes or less nesting levels of ranges, both indicating a very limited tuple space. To exploit this favorable property, we employ a TSS-based algorithm for these subsets following tree constructions. Experimental results show that our work has comparable update performance to TSS in Open vSwitch, while achieving almost an order-of-magnitude improvement on classification performance over TSS.\",\"PeriodicalId\":13243,\"journal\":{\"name\":\"IEEE Journal on Selected Areas in Communications\",\"volume\":\"38 1\",\"pages\":\"1555-1569\"},\"PeriodicalIF\":13.8000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/JSAC.2020.2986935\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Selected Areas in Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/JSAC.2020.2986935\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Selected Areas in Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/JSAC.2020.2986935","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Tuple Space Assisted Packet Classification With High Performance on Both Search and Update
Software switches are being deployed in SDN to enable a wide spectrum of non-traditional applications. The popular Open vSwitch uses a variant of Tuple Space Search (TSS) for packet classifications. Although it has good performance on rule updates, it is less efficient than decision trees on lookups. In this paper, we propose a two-stage framework consisting of heterogeneous algorithms to adaptively exploit different characteristics of the rule sets at different scales. In the first stage, partial decision trees are constructed from several rule subsets grouped with respect to their small fields. This grouping eliminates rule replications at large scales, thereby enabling very efficient pre-cuttings. The second stage handles packet classification at small scales for non-leaf terminal nodes, where rule replications within each subspace may lead to inefficient cuttings. A salient fact is that small space means long address prefixes or less nesting levels of ranges, both indicating a very limited tuple space. To exploit this favorable property, we employ a TSS-based algorithm for these subsets following tree constructions. Experimental results show that our work has comparable update performance to TSS in Open vSwitch, while achieving almost an order-of-magnitude improvement on classification performance over TSS.
期刊介绍:
The IEEE Journal on Selected Areas in Communications (JSAC) is a prestigious journal that covers various topics related to Computer Networks and Communications (Q1) as well as Electrical and Electronic Engineering (Q1). Each issue of JSAC is dedicated to a specific technical topic, providing readers with an up-to-date collection of papers in that area. The journal is highly regarded within the research community and serves as a valuable reference.
The topics covered by JSAC issues span the entire field of communications and networking, with recent issue themes including Network Coding for Wireless Communication Networks, Wireless and Pervasive Communications for Healthcare, Network Infrastructure Configuration, Broadband Access Networks: Architectures and Protocols, Body Area Networking: Technology and Applications, Underwater Wireless Communication Networks, Game Theory in Communication Systems, and Exploiting Limited Feedback in Tomorrow’s Communication Networks.