基于可见-近红外光谱响应预测土壤特征的一些机器学习算法的评估

S. Gruszczyński
{"title":"基于可见-近红外光谱响应预测土壤特征的一些机器学习算法的评估","authors":"S. Gruszczyński","doi":"10.7494/GEOM.2021.15.1.63","DOIUrl":null,"url":null,"abstract":"Using the Land Use and Coverage Frame Survey (LUCAS) database of European soil surface layer properties, statistical and machine learning predictive models for several key soil characteristics (clay content, pH in CaCl2, concentration of organic carbon, calcium carbonates and nitrogen and exchange cations capacity) were compared on the basis of processing their spectral responses in the visible (Vis) and near‑infrared (NIR) parts. Standard methods of relationship modeling were used: stepwise regression, partial least squares regression and linear regression with input data obtained from principal components analysis. Using the inputs extracted by statistical algorithms various machine learning algorithms were used in the modeling. The usefulness of the models was analyzed by comparison with the values of the determination coefficients, the root mean square error and the distribution of residual values. The mean square error of estimation in the cross‑validation procedure for the stack model using the multilayer perceptron and the distributed random forest were as follows: for clay content – ca. 4.5%; for pH – ca. 0.35; for SOC – ca. 7.5 g/kg (0.75% by weight); for CaCO3 content – ca. 19 g/kg; for N content – ca. 0.50 g/kg; and for CEC – ca. 3.5 cmol(+)/kg.","PeriodicalId":36672,"journal":{"name":"Geomatics and Environmental Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Evaluation of Some Machine Learning Algorithms as Tools for Predicting Soil Characteristics Based on Their Spectral Response in the Vis‑NIR Range\",\"authors\":\"S. Gruszczyński\",\"doi\":\"10.7494/GEOM.2021.15.1.63\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the Land Use and Coverage Frame Survey (LUCAS) database of European soil surface layer properties, statistical and machine learning predictive models for several key soil characteristics (clay content, pH in CaCl2, concentration of organic carbon, calcium carbonates and nitrogen and exchange cations capacity) were compared on the basis of processing their spectral responses in the visible (Vis) and near‑infrared (NIR) parts. Standard methods of relationship modeling were used: stepwise regression, partial least squares regression and linear regression with input data obtained from principal components analysis. Using the inputs extracted by statistical algorithms various machine learning algorithms were used in the modeling. The usefulness of the models was analyzed by comparison with the values of the determination coefficients, the root mean square error and the distribution of residual values. The mean square error of estimation in the cross‑validation procedure for the stack model using the multilayer perceptron and the distributed random forest were as follows: for clay content – ca. 4.5%; for pH – ca. 0.35; for SOC – ca. 7.5 g/kg (0.75% by weight); for CaCO3 content – ca. 19 g/kg; for N content – ca. 0.50 g/kg; and for CEC – ca. 3.5 cmol(+)/kg.\",\"PeriodicalId\":36672,\"journal\":{\"name\":\"Geomatics and Environmental Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomatics and Environmental Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7494/GEOM.2021.15.1.63\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomatics and Environmental Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/GEOM.2021.15.1.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

利用欧洲土壤表层特性的土地利用和覆盖框架调查(LUCAS)数据库,在处理其在可见光(Vis)和近红外(NIR)部分的光谱响应的基础上,比较了几种关键土壤特征(粘土含量、CaCl2中的pH、有机碳、碳酸钙和氮的浓度以及交换阳离子容量)的统计和机器学习预测模型。使用了标准的关系建模方法:逐步回归、偏最小二乘回归和线性回归,输入数据来自主成分分析。使用统计算法提取的输入,在建模中使用了各种机器学习算法。通过与确定系数、均方根误差和残差分布的值进行比较,分析了模型的有用性。使用多层感知器和分布式随机森林的堆栈模型的交叉验证过程中的估计均方误差如下:对于粘土含量,约4.5%;pH–约0.35;SOC——约7.5 g/kg(0.75重量%);CaCO3含量–ca.19g/kg;氮含量——约0.50 g/kg;CEC–ca。3.5 cmol(+)/kg。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Evaluation of Some Machine Learning Algorithms as Tools for Predicting Soil Characteristics Based on Their Spectral Response in the Vis‑NIR Range
Using the Land Use and Coverage Frame Survey (LUCAS) database of European soil surface layer properties, statistical and machine learning predictive models for several key soil characteristics (clay content, pH in CaCl2, concentration of organic carbon, calcium carbonates and nitrogen and exchange cations capacity) were compared on the basis of processing their spectral responses in the visible (Vis) and near‑infrared (NIR) parts. Standard methods of relationship modeling were used: stepwise regression, partial least squares regression and linear regression with input data obtained from principal components analysis. Using the inputs extracted by statistical algorithms various machine learning algorithms were used in the modeling. The usefulness of the models was analyzed by comparison with the values of the determination coefficients, the root mean square error and the distribution of residual values. The mean square error of estimation in the cross‑validation procedure for the stack model using the multilayer perceptron and the distributed random forest were as follows: for clay content – ca. 4.5%; for pH – ca. 0.35; for SOC – ca. 7.5 g/kg (0.75% by weight); for CaCO3 content – ca. 19 g/kg; for N content – ca. 0.50 g/kg; and for CEC – ca. 3.5 cmol(+)/kg.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geomatics and Environmental Engineering
Geomatics and Environmental Engineering Earth and Planetary Sciences-Computers in Earth Sciences
CiteScore
2.30
自引率
0.00%
发文量
27
期刊最新文献
Improving Traffic-noise-mitigation Strategies with LiDAR-based 3D Tree-canopy Analysis Apartment Rental Market in Border Cities of Poland and Ukraine Comparison of Statistical and Machine-Learning Model for Analyzing Landslide Susceptibility in Sumedang Area, Indonesia Sustainability Analysis of Domestic Raw Water Supply in Bandung City of Indonesia Estimation of Natural Uranium and Its Risk-Assessment in Groundwater of Bangalore Urban District of Karnataka, India
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1