{"title":"增材制造不锈钢的腐蚀特性综述","authors":"M. Laleh, A. Hughes, W. Xu, I. Gibson, M. Tan","doi":"10.1080/09506608.2020.1855381","DOIUrl":null,"url":null,"abstract":"ABSTRACT Additive manufacturing (AM) is associated with a sequence of rapid heating and cooling cycles along with large temperature gradients, developing complex thermal histories which have direct influence on resultant microstructures. Such a dynamic and far-from-equilibrium process leads to distinct microstructural features that are expected to cause changes in the corrosion characteristics of AM stainless steels. Currently such changes are not well understood, consequently inconsistencies and disagreements are frequently found in the literature on the corrosion behaviour of AM stainless steels. This paper performs a critical review of corrosion characteristics of AM stainless steels by assessing the effects of their unique microstructural features on corrosion behaviour, with particular focus on new corrosion phenomena and selected critical forms of localised corrosion including pitting corrosion, erosion-corrosion, intergranular corrosion, fatigue corrosion, and stress corrosion cracking. Discussion on the mechanisms of these corrosion phenomena and behaviour, as well as major influencing factors, are undertaken, leading to recommendations and suggestions for future development of AM stainless steels for various corrosive conditions.","PeriodicalId":14427,"journal":{"name":"International Materials Reviews","volume":"66 1","pages":"563 - 599"},"PeriodicalIF":16.8000,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09506608.2020.1855381","citationCount":"33","resultStr":"{\"title\":\"A critical review of corrosion characteristics of additively manufactured stainless steels\",\"authors\":\"M. Laleh, A. Hughes, W. Xu, I. Gibson, M. Tan\",\"doi\":\"10.1080/09506608.2020.1855381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Additive manufacturing (AM) is associated with a sequence of rapid heating and cooling cycles along with large temperature gradients, developing complex thermal histories which have direct influence on resultant microstructures. Such a dynamic and far-from-equilibrium process leads to distinct microstructural features that are expected to cause changes in the corrosion characteristics of AM stainless steels. Currently such changes are not well understood, consequently inconsistencies and disagreements are frequently found in the literature on the corrosion behaviour of AM stainless steels. This paper performs a critical review of corrosion characteristics of AM stainless steels by assessing the effects of their unique microstructural features on corrosion behaviour, with particular focus on new corrosion phenomena and selected critical forms of localised corrosion including pitting corrosion, erosion-corrosion, intergranular corrosion, fatigue corrosion, and stress corrosion cracking. Discussion on the mechanisms of these corrosion phenomena and behaviour, as well as major influencing factors, are undertaken, leading to recommendations and suggestions for future development of AM stainless steels for various corrosive conditions.\",\"PeriodicalId\":14427,\"journal\":{\"name\":\"International Materials Reviews\",\"volume\":\"66 1\",\"pages\":\"563 - 599\"},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2020-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/09506608.2020.1855381\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Materials Reviews\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/09506608.2020.1855381\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Materials Reviews","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09506608.2020.1855381","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A critical review of corrosion characteristics of additively manufactured stainless steels
ABSTRACT Additive manufacturing (AM) is associated with a sequence of rapid heating and cooling cycles along with large temperature gradients, developing complex thermal histories which have direct influence on resultant microstructures. Such a dynamic and far-from-equilibrium process leads to distinct microstructural features that are expected to cause changes in the corrosion characteristics of AM stainless steels. Currently such changes are not well understood, consequently inconsistencies and disagreements are frequently found in the literature on the corrosion behaviour of AM stainless steels. This paper performs a critical review of corrosion characteristics of AM stainless steels by assessing the effects of their unique microstructural features on corrosion behaviour, with particular focus on new corrosion phenomena and selected critical forms of localised corrosion including pitting corrosion, erosion-corrosion, intergranular corrosion, fatigue corrosion, and stress corrosion cracking. Discussion on the mechanisms of these corrosion phenomena and behaviour, as well as major influencing factors, are undertaken, leading to recommendations and suggestions for future development of AM stainless steels for various corrosive conditions.
期刊介绍:
International Materials Reviews (IMR) is a comprehensive publication that provides in-depth coverage of the current state and advancements in various materials technologies. With contributions from internationally respected experts, IMR offers a thorough analysis of the subject matter. It undergoes rigorous evaluation by committees in the United States and United Kingdom for ensuring the highest quality of content.
Published by Sage on behalf of ASM International and the Institute of Materials, Minerals and Mining (UK), IMR is a valuable resource for professionals in the field. It is available online through Sage's platform, facilitating convenient access to its wealth of information.
Jointly produced by ASM International and the Institute of Materials, Minerals and Mining (UK), IMR focuses on technologies that impact industries dealing with metals, structural ceramics, composite materials, and electronic materials. Its coverage spans from practical applications to theoretical and practical aspects of material extraction, production, fabrication, properties, and behavior.