N. Abbaszadeh Tehrani, H. Z. Mohd Shafri, S. Salehi, J. Chanussot, M. Janalipour
{"title":"用于评估乌尔米亚湖流域生态系统健康变化的遥感生态系统健康评估(RSEHA)模型","authors":"N. Abbaszadeh Tehrani, H. Z. Mohd Shafri, S. Salehi, J. Chanussot, M. Janalipour","doi":"10.1080/19479832.2021.1924880","DOIUrl":null,"url":null,"abstract":"ABSTRACT The widespread, severe negative impacts of human activities on Earth’s ecosystems over the past few decades have highlighted the importance of continuous and up-to-date monitoring of ecosystems health. On the other hand, it has been proven that the use of remote sensing technology in environmental studies can lead to accurate and reliable results with spending less cost and time. This research attempts to use remote sensing indicators and the framework of Vigour, Organization, Resilience, and Services (VORS) to assess ecosystem health by introducing Remotely Sensed Ecosystem Health Assessment (RSEHA) Model. By applying 10 spatiotemporal indices, ecosystem health has been assessed in Lake Urmia Basin (LUB) during the years 2001–2014. The results showed that the health status of LUB in its different parts varied from ‘very strong’ to ‘very poor’. The health status around LUB has changed from ‘poor’ to ‘very poor’, while it has improved, especially in cultivated lands. The health of the lake has been sacrificed in favour of the development of agricultural areas in the basin. Based on validation results, the RSEHA model can determine the ecosystem conditions at pixel level at any time at reasonable cost and accuracy.","PeriodicalId":46012,"journal":{"name":"International Journal of Image and Data Fusion","volume":"13 1","pages":"180 - 205"},"PeriodicalIF":1.8000,"publicationDate":"2021-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19479832.2021.1924880","citationCount":"25","resultStr":"{\"title\":\"Remotely-Sensed Ecosystem Health Assessment (RSEHA) model for assessing the changes of ecosystem health of Lake Urmia Basin\",\"authors\":\"N. Abbaszadeh Tehrani, H. Z. Mohd Shafri, S. Salehi, J. Chanussot, M. Janalipour\",\"doi\":\"10.1080/19479832.2021.1924880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The widespread, severe negative impacts of human activities on Earth’s ecosystems over the past few decades have highlighted the importance of continuous and up-to-date monitoring of ecosystems health. On the other hand, it has been proven that the use of remote sensing technology in environmental studies can lead to accurate and reliable results with spending less cost and time. This research attempts to use remote sensing indicators and the framework of Vigour, Organization, Resilience, and Services (VORS) to assess ecosystem health by introducing Remotely Sensed Ecosystem Health Assessment (RSEHA) Model. By applying 10 spatiotemporal indices, ecosystem health has been assessed in Lake Urmia Basin (LUB) during the years 2001–2014. The results showed that the health status of LUB in its different parts varied from ‘very strong’ to ‘very poor’. The health status around LUB has changed from ‘poor’ to ‘very poor’, while it has improved, especially in cultivated lands. The health of the lake has been sacrificed in favour of the development of agricultural areas in the basin. Based on validation results, the RSEHA model can determine the ecosystem conditions at pixel level at any time at reasonable cost and accuracy.\",\"PeriodicalId\":46012,\"journal\":{\"name\":\"International Journal of Image and Data Fusion\",\"volume\":\"13 1\",\"pages\":\"180 - 205\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/19479832.2021.1924880\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Image and Data Fusion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19479832.2021.1924880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Image and Data Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19479832.2021.1924880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Remotely-Sensed Ecosystem Health Assessment (RSEHA) model for assessing the changes of ecosystem health of Lake Urmia Basin
ABSTRACT The widespread, severe negative impacts of human activities on Earth’s ecosystems over the past few decades have highlighted the importance of continuous and up-to-date monitoring of ecosystems health. On the other hand, it has been proven that the use of remote sensing technology in environmental studies can lead to accurate and reliable results with spending less cost and time. This research attempts to use remote sensing indicators and the framework of Vigour, Organization, Resilience, and Services (VORS) to assess ecosystem health by introducing Remotely Sensed Ecosystem Health Assessment (RSEHA) Model. By applying 10 spatiotemporal indices, ecosystem health has been assessed in Lake Urmia Basin (LUB) during the years 2001–2014. The results showed that the health status of LUB in its different parts varied from ‘very strong’ to ‘very poor’. The health status around LUB has changed from ‘poor’ to ‘very poor’, while it has improved, especially in cultivated lands. The health of the lake has been sacrificed in favour of the development of agricultural areas in the basin. Based on validation results, the RSEHA model can determine the ecosystem conditions at pixel level at any time at reasonable cost and accuracy.
期刊介绍:
International Journal of Image and Data Fusion provides a single source of information for all aspects of image and data fusion methodologies, developments, techniques and applications. Image and data fusion techniques are important for combining the many sources of satellite, airborne and ground based imaging systems, and integrating these with other related data sets for enhanced information extraction and decision making. Image and data fusion aims at the integration of multi-sensor, multi-temporal, multi-resolution and multi-platform image data, together with geospatial data, GIS, in-situ, and other statistical data sets for improved information extraction, as well as to increase the reliability of the information. This leads to more accurate information that provides for robust operational performance, i.e. increased confidence, reduced ambiguity and improved classification enabling evidence based management. The journal welcomes original research papers, review papers, shorter letters, technical articles, book reviews and conference reports in all areas of image and data fusion including, but not limited to, the following aspects and topics: • Automatic registration/geometric aspects of fusing images with different spatial, spectral, temporal resolutions; phase information; or acquired in different modes • Pixel, feature and decision level fusion algorithms and methodologies • Data Assimilation: fusing data with models • Multi-source classification and information extraction • Integration of satellite, airborne and terrestrial sensor systems • Fusing temporal data sets for change detection studies (e.g. for Land Cover/Land Use Change studies) • Image and data mining from multi-platform, multi-source, multi-scale, multi-temporal data sets (e.g. geometric information, topological information, statistical information, etc.).